{tab=Research} Totte Niittylä behind aspen trees Photo: Fredrik Larsson

Carbon allocation is a fundamental physiological process in tree growth. Carbon allocation at tree level cascades across scales to ecosystems and global carbon cycle. In my group we investigate the genetic, biochemical and physiological processes linking metabolism and carbon allocation in trees.

We apply a combination of genomics, metabolomics and fluxomics tools to identify genes, enzymes and pathways which are central in carbon allocation to woody biomass. We use aspen as a model in most of our tree work, while Arabidopsis is used to address fundamental questions linked to metabolism and cell wall biosynthesis. Our Arabidopsis work has recently focused on starch and sucrose metabolism as well as carbohydrate active enzymes involved in the biosynthesis of arabinogalactan proteins (AGPs), and the relationship between AGP glycosylation and cellulose biosynthesis.

Collage of three photos showing wood of plants in different resolutionsA) Light microscopy picture of aspen wood fibers and vessels; B) Cross section of Arabidopsis stem. Lignified cell walls are shown in red and non-lignified in blue; C) Cross section of aspen stem; D) Siliques of wild type Arabidopsis and opnr-1 showing the seed abortion phenotype (left). Elongated zygotes of wild type and opnr-1 (middle). Confocal microscopy images showing the dual localisation of OPNR in nuclear envelope and mitochondria labelled with PHB3-mCherry (right).

In addition to the cell wall and metabolism centric work on carbon allocation, we also explore overlooked fundamental processes in plant growth. One third of the genes in the model plant Arabidopsis remain of unknown function. Our ambition is to push new inroads to this unknown gene space. We are particularly interested in identifying essential genes, which are indispensable in dividing and growing plant cells.

Collage with different microscopic images characterising the newly identified gene OPENER Siliques of wild type Arabidopsis and opnr-1 showing the seed abortion phenotype (left). Elongated zygotes of wild type and opnr-1 (middle). Confocal microscopy images showing the dual localisation of OPNR in nuclear envelope and mitochondria labelled with PHB3-mCherry (right)

Our approach is to investigate evolutionarily-conserved single copy Arabidopsis genes of unknown function with predominant expression in meristematic cells. Evolutionarily-conserved single copy genes in flowering plants have been shown to be enriched in essential housekeeping functions. This exploratory project has led us to new areas of cell biology.

Our current focus is on understanding the function of an essential gene we named OPENER (OPNR). opnr mutants show zygotic lethality and endosperm arrest, and intriguingly OPNR localizes to both nuclear envelope and mitochondria pointing to an essential process occurring on both nucleus and mitochondria in dividing plant cells.

Recent Key Publications

  • Wang W, Talide L, Viljamaa S, Niittylä T (2022). Aspen growth is not limited by starch reserves. Current Biology, 32(16): 3619-3627 doi.org/10.1016/j.cub.2022.06.056
  • Fünfgeld MMFF, Wang W, Ishihara H, Arrivault S, Feil R, Smith AM, Stitt M, Lunn JE, Niittylä T. (2022). Sucrose synthases are not involved in starch synthesis in Arabidopsis Nature Plants, 8(5): 574–582. doi.org/10.1038/s41477-022-01140-y  
  • Dominquez PG, Evgeniy D, Derba-Maceluch M, Bünder A, Hedenström M, Tomášková I, Mellerowicz EJ, Niittylä T (2021). Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. New Phytologist, 229: 186-198. https://doi.org/10.1111/nph.16721
  • Nibbering P, Petersen BL, Mohammed SM, Jørgensen B, Ulvskov P, Niittylä T (2020). Golgi-localized exo-β1,3-galactosidases involved in cell expansion and root growth in Arabidopsis. Journal of Biological Chemistry, 295: 10581-10592. https://doi.org/10.1074/jbc.ra120.013878
  • Wang W, Zhang X, Niittylä T (2019). OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis. Plant Cell, 31:1446-1465. https://doi.org/10.1105/tpc.19.00033
{tab=Team}
  • Personnel Image
    Derba-Maceluch, Marta
    Staff scientist
    E-mail
    Room: B6-34-45
  • Personnel Image
    Kumari, Pratibha
    PostDoc
    E-mail
    Room: B6-16-45
  • Personnel Image
    Niittylä, Totte
    Prefect, Associate Professor
    E-mail
    Room: C3-31-41
    Website
  • Personnel Image
    Seerangan , Kumar
    PostDoc
    E-mail
    Room: B5-52-45
  • Personnel Image
    Takahashi Schmidt, Junko
    Research Engineer
    E-mail
    Room: KB5C12
  • Personnel Image
    Talide, Loïc
    PostDoc
    E-mail
    Room: KB5C4
  • Personnel Image
    Viljamaa, Sonja
    Consultant
    E-mail
    Room: KB5C12
  • Personnel Image
    Wang, Wei
    Staff scientist
    E-mail
    Room: KB5C8
  • Personnel Image
    Wieloch, Thomas
    PostDoc
    E-mail
    Room: KB5C4
  • Personnel Image
    Zhou, Jingjing
    PostDoc
    E-mail
    Room: KB5C12

{tab=CV T. Niittylä}
  • Since 2015: Associate Professor, Swedish University of Agricultural Sciences
  • 2009 – 2014 Assistant Professor, Swedish University of Agricultural Sciences
  • 2005 – 2008 Post Doc, Carnegie Institution for Science, California, USA
  • 2004 PhD John Innes Centre, University of East Anglia, UK
  • 2000 MSc University of Helsinki
{tab=Publications}
  2023 (2)
Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants. Bernacka-Wojcik, I., Talide, L., Abdel Aziz, I., Simura, J., Oikonomou, V. K., Rossi, S., Mohammadi, M., Dar, A. M., Seitanidou, M., Berggren, M., Simon, D. T., Tybrandt, K., Jonsson, M. P., Ljung, K., Niittylä, T., & Stavrinidou, E. Advanced Science, 10(14): 2206409. May 2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202206409
Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants [link]Paper   doi   link   bibtex   abstract  
Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications. Baş, Y., Berglund, L., Niittylä, T., Zattarin, E., Aili, D., Sotra, Z., Rinklake, I., Junker, J., Rakar, J., & Oksman, K. Biomacromolecules, 24(12): 5605–5619. December 2023. Publisher: American Chemical Society
Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications [link]Paper   doi   link   bibtex   abstract  
  2022 (6)
Aspen growth is not limited by starch reserves. Wang, W., Talide, L., Viljamaa, S., & Niittylä, T. Current Biology, 32(16): 3619–3627.e4. August 2022.
Aspen growth is not limited by starch reserves [link]Paper   doi   link   bibtex   abstract  
CAGEs are Golgi-localized GT31 enzymes involved in cellulose biosynthesis in Arabidopsis. Nibbering, P., Castilleux, R., Wingsle, G., & Niittylä, T. The Plant Journal, 110(5): 1271–1285. 2022.
CAGEs are Golgi-localized GT31 enzymes involved in cellulose biosynthesis in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1. Jonasson, S., Bünder, A., Berglund, L., Niittylä, T., & Oksman, K. Nanomaterials, 12(19): 3448. October 2022.
Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1 [link]Paper   doi   link   bibtex   abstract  
Mobile forms of carbon in trees: metabolism and transport. Dominguez, P. G., & Niittylä, T. Tree Physiology, 42(3): 458–487. March 2022.
Mobile forms of carbon in trees: metabolism and transport [link]Paper   doi   link   bibtex   abstract  
Sucrose synthase activity is not required for cellulose biosynthesis in Arabidopsis. Wang, W., Viljamaa, S., Hodek, O., Moritz, T., & Niittylä, T. The Plant Journal, 110(5): 1493–1497. 2022.
Sucrose synthase activity is not required for cellulose biosynthesis in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. Fünfgeld, M. M. F. F., Wang, W., Ishihara, H., Arrivault, S., Feil, R., Smith, A. M., Stitt, M., Lunn, J. E., & Niittylä, T. Nature Plants, 8(5): 574–582. May 2022.
Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves [link]Paper   doi   link   bibtex   abstract  
  2021 (5)
Comparison of tension wood and normal wood for oxidative nanofibrillation and network characteristics. Jonasson, S., Bünder, A., Das, O., Niittylä, T., & Oksman, K. Cellulose, 28(2): 1085–1104. January 2021.
Comparison of tension wood and normal wood for oxidative nanofibrillation and network characteristics [link]Paper   doi   link   bibtex   abstract   4 downloads  
Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. Diacci, C., Abedi, T., Lee, J. W., Gabrielsson, E. O., Berggren, M., Simon, D. T., Niittylä, T., & Stavrinidou, E. iScience, 24(1): 101966. January 2021.
Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors [link]Paper   doi   link   bibtex  
Fluorescence Lifetime Imaging as an In Situ and Label-Free Readout for the Chemical Composition of Lignin. Escamez, S., Terryn, C., Gandla, M. L., Yassin, Z., Scheepers, G., Näsholm, T., Sundman, O., Jönsson, L. J., Lundberg-Felten, J., Tuominen, H., Niittylä, T., & Paës, G. ACS Sustainable Chemistry & Engineering, 9(51): 17381–17392. December 2021.
Fluorescence Lifetime Imaging as an In Situ and Label-Free Readout for the Chemical Composition of Lignin [link]Paper   doi   link   bibtex   abstract   10 downloads  
Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. Dominguez, P. G., Donev, E., Derba‐Maceluch, M., Bünder, A., Hedenström, M., Tomášková, I., Mellerowicz, E. J., & Niittylä, T. New Phytologist, 229(1): 186–198. January 2021.
Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen [link]Paper   doi   link   bibtex   8 downloads  
The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall. Jonasson, S., Bünder, A., Berglund, L., Hertzberg, M., Niittylä, T., & Oksman, K. Nanomaterials, 11(5): 1179. April 2021.
The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2020 (5)
A metabolite roadmap of the wood‐forming tissue in Populus tremula. Abreu, I. N., Johansson, A. I., Sokołowska, K., Niittylä, T., Sundberg, B., Hvidsten, T. R., Street, N. R., & Moritz, T. New Phytologist, 228(5): 1559–1572. December 2020.
A metabolite roadmap of the wood‐forming tissue in Populus tremula [link]Paper   doi   link   bibtex   2 downloads  
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Bünder, A., Sundman, O., Mahboubi, A., Persson, S., Mansfield, S. D., Rüggeberg, M., & Niittylä, T. The Plant Journal, 103(5): 1858–1868. August 2020.
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen [link]Paper   doi   link   bibtex  
Golgi-localized exo-β1,3-galactosidases involved in cell expansion and root growth in Arabidopsis. Nibbering, P., Petersen, B. L., Motawia, M. S., Jørgensen, B., Ulvskov, P., & Niittylä, T. Journal of Biological Chemistry, 295(31): 10581–10592. July 2020.
Golgi-localized exo-β1,3-galactosidases involved in cell expansion and root growth in Arabidopsis [link]Paper   doi   link   bibtex  
Isolation and characterization of cellulose nanofibers from aspen wood using derivatizing and non-derivatizing pretreatments. Jonasson, S., Bünder, A., Niittylä, T., & Oksman, K. Cellulose, 27(1): 185–203. January 2020.
Isolation and characterization of cellulose nanofibers from aspen wood using derivatizing and non-derivatizing pretreatments [link]Paper   doi   link   bibtex   abstract  
The Spatio-Temporal Distribution of Cell Wall-Associated Glycoproteins During Wood Formation in Populus. Abedi, T., Castilleux, R., Nibbering, P., & Niittylä, T. Frontiers in Plant Science, 11: 611607. December 2020.
The Spatio-Temporal Distribution of Cell Wall-Associated Glycoproteins During Wood Formation in Populus [link]Paper   doi   link   bibtex   abstract   5 downloads  
  2019 (4)
Genome‐wide association study identified novel candidate loci affecting wood formation in Norway spruce. Baison, J., Vidalis, A., Zhou, L., Chen, Z., Li, Z., Sillanpää, M. J., Bernhardsson, C., Scofield, D., Forsberg, N., Grahn, T., Olsson, L., Karlsson, B., Wu, H., Ingvarsson, P. K., Lundqvist, S., Niittylä, T., & García‐Gil, M R. The Plant Journal, 100(1): 83–100. October 2019.
Genome‐wide association study identified novel candidate loci affecting wood formation in Norway spruce [link]Paper   doi   link   bibtex  
High Spatial Resolution Profiling in Tree Species. Giacomello, S., Delhomme, N., Niittylä, T., Tuominen, H., & Street, N. R. In Annual Plant Reviews online, pages 329–360. American Cancer Society, 2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119312994.apr0688
High Spatial Resolution Profiling in Tree Species [link]Paper   doi   link   bibtex   abstract   1 download  
OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis. Wang, W., Zhang, X., & Niittylä, T. The Plant Cell, 31(7): 1446–1465. July 2019.
OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis [link]Paper   doi   link   bibtex   3 downloads  
Two-step derivatization for determination of sugar phosphates in plants by combined reversed phase chromatography/tandem mass spectrometry. Rende, U., Niittylä, T., & Moritz, T. Plant Methods, 15(1): 127. December 2019.
Two-step derivatization for determination of sugar phosphates in plants by combined reversed phase chromatography/tandem mass spectrometry [link]Paper   doi   link   bibtex   abstract  
  2018 (2)
Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce. Zhang, X., Dominguez, P. G., Kumar, M., Bygdell, J., Miroshnichenko, S., Sundberg, B., Wingsle, G., & Niittylä, T. Plant Physiology, 177(3): 1096–1107. July 2018.
Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce [link]Paper   doi   link   bibtex  
Sucrose transport and carbon fluxes during wood formation. Mahboubi, A., & Niittylä, T. Physiologia Plantarum, 164(1): 67–81. September 2018.
Sucrose transport and carbon fluxes during wood formation [link]Paper   doi   link   bibtex  
  2017 (5)
AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., Kumar, V., Mannapperuma, C., Delhomme, N., Nilsson, O., Tuominen, H., Pesquet, E., Fischer, U., Niittylä, T., Sundberg, B., & Hvidsten, T. R. The Plant Cell, 29(7): 1585–1604. July 2017.
AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula [link]Paper   doi   link   bibtex  
Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. Rende, U., Wang, W., Gandla, M. L., Jönsson, L. J., & Niittylä, T. New Phytologist, 214(2): 796–807. April 2017.
Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood [link]Paper   doi   link   bibtex  
Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants. Blokhina, O., Valerio, C., Sokołowska, K., Zhao, L., Kärkönen, A., Niittylä, T., & Fagerstedt, K. Frontiers in Plant Science, 07. January 2017.
Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants [link]Paper   doi   link   bibtex  
Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood. Roach, M., Arrivault, S., Mahboubi, A., Krohn, N., Sulpice, R., Stitt, M., & Niittylä, T. Journal of Experimental Botany, 68(13): 3529–3539. June 2017.
Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood [link]Paper   doi   link   bibtex  
Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development. Schneider, R., Tang, L., Lampugnani, E. R., Barkwill, S., Lathe, R., Zhang, Y., McFarlane, H. E., Pesquet, E., Niittylä, T., Mansfield, S. D., Zhou, Y., & Persson, S. The Plant Cell, 29(10): 2433–2449. October 2017.
Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development [link]Paper   doi   link   bibtex  
  2015 (1)
13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen. Mahboubi, A., Linden, P., Hedenstrom, M., Moritz, T., & Niittylä, T. Plant Physiol, 168(2): 478–89. June 2015.
13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen [link]Paper   doi   link   bibtex   abstract  
  2014 (1)
Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. Gerber, L., Zhang, B., Roach, M., Rende, U., Gorzsás, A., Kumar, M., Burgert, I., Niittylä, T., & Sundberg, B. New Phytologist, 203(4): 1220–1230. September 2014.
Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers [link]Paper   doi   link   bibtex  
  2013 (2)
Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers. Mahboubi, A., Ratke, C., Gorzsas, A., Kumar, M., Mellerowicz, E. J., & Niittylä, T. PLANT PHYSIOLOGY, 163(4): 1729–1740. December 2013.
Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers [link]Paper   doi   link   bibtex  
The Norway spruce genome sequence and conifer genome evolution. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, Å., Rilakovic, N., Ritland, C., Rosselló, J. A., Sena, J., Svensson, T., Talavera-López, C., Theißen, G., Tuominen, H., Vanneste, K., Wu, Z., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R. P., Bohlmann, J., Bousquet, J., Garcia Gil, R., Hvidsten, T. R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Lee Thompson, S., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P. K., Lundeberg, J., & Jansson, S. Nature, 497(7451): 579–584. May 2013.
The Norway spruce genome sequence and conifer genome evolution [link]Paper   doi   link   bibtex   1 download  
  2012 (2)
Fructokinase is required for carbon partitioning to cellulose in aspen wood: Fructokinase in aspen wood formation. Roach, M., Gerber, L., Sandquist, D., Gorzsás, A., Hedenström, M., Kumar, M., Steinhauser, M. C., Feil, R., Daniel, G., Stitt, M., Sundberg, B., & Niittylä, T. The Plant Journal, 70(6): 967–977. June 2012.
Fructokinase is required for carbon partitioning to cellulose in aspen wood: Fructokinase in aspen wood formation [link]Paper   doi   link   bibtex  
Paramutation-Like Interaction of T-DNA Loci in Arabidopsis. Xue, W., Ruprecht, C., Street, N., Hematy, K., Chang, C., Frommer, W. B., Persson, S., & Niittylä, T. PLoS ONE, 7(12): e51651. December 2012.
Paramutation-Like Interaction of T-DNA Loci in Arabidopsis [link]Paper   doi   link   bibtex  
  2009 (1)
Comparison of Quantitative Metabolite Imaging Tools and Carbon-13 Techniques for Fluxomics. Niittylae, T., Chaudhuri, B., Sauer, U., & Frommer, W. B. In Belostotsky, D. A., editor(s), Plant Systems Biology, volume 553, pages 355–372. Humana Press, Totowa, NJ, 2009. Series Title: Methods in Molecular Biology™
Comparison of Quantitative Metabolite Imaging Tools and Carbon-13 Techniques for Fluxomics [link]Paper   doi   link   bibtex  
  2007 (2)
Fluxomics with Ratiometric Metabolite Dyes. Chaudhuri, B., Niittylä, T., Hörmann, F., & Frommer, W. B. Plant Signaling & Behavior, 2(2): 120–122. March 2007.
Fluxomics with Ratiometric Metabolite Dyes [link]Paper   doi   link   bibtex  
Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis*. Niittylä, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., & Schulze, W. X. Molecular & Cellular Proteomics, 6(10): 1711–1726. October 2007.
Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis* [link]Paper   doi   link   bibtex   abstract  
  2006 (1)
Similar Protein Phosphatases Control Starch Metabolism in Plants and Glycogen Metabolism in Mammals*. Niittylä, T., Comparot-Moss, S., Lue, W., Messerli, G., Trevisan, M., Seymour, M. D. J., Gatehouse, J. A., Villadsen, D., Smith, S. M., Chen, J., Zeeman, S. C., & Smith, A. M. Journal of Biological Chemistry, 281(17): 11815–11818. April 2006.
Similar Protein Phosphatases Control Starch Metabolism in Plants and Glycogen Metabolism in Mammals* [link]Paper   doi   link   bibtex   abstract  
  2004 (1)
A Previously Unknown Maltose Transporter Essential for Starch Degradation in Leaves. Niittylä, T., Messerli, G., Trevisan, M., Chen, J., Smith, A. M., & Zeeman, S. C. Science, 303(5654): 87–89. January 2004. Publisher: American Association for the Advancement of Science Section: Report
A Previously Unknown Maltose Transporter Essential for Starch Degradation in Leaves [link]Paper   doi   link   bibtex   abstract  
  2003 (1)
Starch Degradation in Leaves. Smith, A. M., Zeeman, S., Niittylä, T., Kofler, H., Thorneycroft, D., & Smith, S. M. Journal of Applied Glycoscience, 50(2): 173–176. 2003.
doi   link   bibtex   abstract   1 download  
  2002 (1)
Differential Expression of Genes Encoding Arabidopsis Phospholipases After Challenge with Virulent or Avirulent Pseudomonas Isolates. de Torres Zabela, M., Fernandez-Delmond, I., Niittylä, T., Sanchez, P., & Grant, M. Molecular Plant-Microbe Interactions®, 15(8): 808–816. August 2002. Publisher: Scientific Societies
Differential Expression of Genes Encoding Arabidopsis Phospholipases After Challenge with Virulent or Avirulent Pseudomonas Isolates [link]Paper   doi   link   bibtex   abstract  
{tab=Svenska} Totte Niittylä bakom aspträd Foto: Fredrik Larsson

Skogsråvaran är en förnybar resurs som blir allt viktigare i framtiden när vi övergår från fossila till mer hållbara resurser. Utvecklingen mot biobaserad ekonomi kräver optimerad produktion från skogsbruk och trädplantager. Vårt mål är att utveckla genetiska verktyg för att öka kolallokering till ved.

I de flesta trädslag byggs vedbiomassan upp från sackaros som importeras från fotosyntetiska vävnader. Vi undersöker mekanismerna för kol allokering, sackaros transport och metabolism i ved och dess betydelse för cellväggbiosyntes. Vi fokuserar särskilt på cellulosabiosyntes. Informationen kan sedan användas i skogsträdsförädling. Vår vision är att förädling av träd kommer att ge underlag för framtida bioraffinaderi industrier och minskar utnyttjande trycket på orörda skogar.