{tab=Research} Markus Schmid sitting at his desk in his officePhoto: Fredrik Larsson

A fundamental difference between the development of plants and most animals is that the former maintains the potential to form new organs throughout their life. This capacity not only endows plants with the ability for continued growth, but also provides them with the means to rapidly and flexibly adjust to changes in their environment, resulting in a high degree of phenotypic plasticity. The aim of our research is to understand the molecular mechanisms that controls plant development, in particular the transition from vegetative to reproductive growth, in response to both endogenous and environmental stimuli.

Ambient temperature & alternative pre-mRNA splicing

An environmental signal that can have pronounced effects on plant growth and development is ambient temperature. We have recently identified a mutant in the plant model Arabidopsis thaliana that displays strong pleiotropic developmental defects in the shoot meristem and lateral organs specifically at low ambient temperature. The mutated gene, PORCUPINE, encodes a putative splice factor, suggesting that alternative splicing of pre-mRNA might be involved in modulating growth and development in response to changes in ambient temperature and might contribute to establish phenotypic plasticity in plants.

Illustration of the research done in Markus Schmid's groupAlternative splicing in the porcupine mutant

We are currently performing a number of experiments to:

  • identify the molecular mechanisms underlying the temperature-specific phenotype of the porcupine mutant
  • study the general effect of temperature on (alternative) pre-mRNA splicing and its consequences for plant growth and development
  • isolate and characterize new temperature-specific alleles affecting plant development

Regulation of flowering time & flower development

A trait that is in part controlled by ambient temperature is the induction of flowering. The transition from vegetative growth to flowering is a central event in the life cycle of plants, which requires correct timing to ensure reproductive success. In most plants flowering time is not fully deterministic but allows for some degree of phenotypic plasticity. Given that the decision to initiate flowering is made in a small number of cells in the leaf vasculature and the shoot meristem, any results obtained from complex tissues can be misleading as they likely mask tissue-specific regulatory processes. To overcome these limitations, we have adopted technologies such as INTACT and FACS to isolate nuclei from specific tissues for subsequent (epi-)genome and transcriptome analyses.

Regulation of flowering in ArabidopsisGenomics in the flower primordia

In collaboration with our colleagues at UPSC, Karin Ljung, Johannes Hanson and Ove Nilsson, we are:

  • investigating the dynamic changes of the epigenome, transcriptome, translatome, and metabolome during the switch to flowering in A. thaliana and hybrid aspen
  • isolating and characterizing novel flowering time regulators in A. thaliana
  • establishing methods for tissue- and cell-type specific “-omics” approaches in hybrid aspen

One of the first steps once plants are committed to flowering is the induction of the plant-specific transcription factor LEAFY in the incipient flower primordia. In collaboration with our colleagues Ove Nilsson (UPSC) and François Parcy (Grenoble) we are investigating how the LEAFY protein contributes to specifying the four different floral organs.

Trehalose 6 phosphate & SnRK1 signaling

The transition to flowering and subsequent seed filling are highly energy demanding processes. Thus, it is not surprising that the time of flowering is influenced by carbohydrate availability. Of particular importance in this regard is the phospho-disaccharide trehalose 6-phosphate (T6P), which plays a crucial role in carbohydrate signaling. T6P signals at least in part through the evolutionary conserved heterotrimeric kinase complex SUCROSE NON-FERMENTING1 RELATED KINASE 1 (SnRK1). We are studying how the T6P pathway and SnRK1 complex are integrated into the canonical network that regulates flowering.

Key publications:

  • Capovilla, G, Delhomme, N, Collani, S, Shutava, I, Bezrukov, I, Symeonidi, E, de Francisco Amorim, M, Laubinger, S, Schmid, M (2018) PORCUPINE regulates development in response to temperature through alternative splicing. Nature Plants 4: 534-539. doi: 10.1038/s41477-018-0176-z
  • You, Y, Sawikowska, A, Neumann, M, Posé, D, Capovilla, G, Langenecker, T, Neher, RA, Krajewski, P, Schmid, M (2017) Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nature Communications 8: 15120, doi: 10.1038/ncomms15120
  • Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH and Schmid M (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503: 414-417.
  • Wahl V, Ponnu P, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M and Schmid M (2013). Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339: 704-707.
  • Mathieu J, Warthmann N, Küttner F and Schmid M (2007). Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology 17: 1055-1060.
{tab=Team}
  • Personnel Image
    Collani, Silvio
    Staff scientist
    E-mail
    Room: B4-16-45
  • Personnel Image
    Dikaya, Varvara
    PhD Student, Representative
    E-mail
    Room: B4-20-45
  • Personnel Image
    El Arbi , Nabila
    PhD Student
    E-mail
    Room: C4-29-40
  • Personnel Image
    Nardeli, Sarah Muniz
    PostDoc
    E-mail
    Room:
  • Personnel Image
    Schmid, Markus
    Professor
    E-mail
    Room:
    Website

{tab=CV M. Schmid}
  • since 2015: Professor, Umeå University, Sweden
  • 2018-2021: visiting PI, BAICTBMD, Beijing Forestry University, PR China
  • 2002-2015: Group Leader, Max Planck Institute for Developmental Biology, Tübingen, Germany
  • 2000-2002: Research Fellow, The Salk Institute for Biological Studies, La Jolla, CA, USA
  • 1999-2000: Research Associate, Dept. of Botany, Technical University Munich, Germany
  • 1999: Dr. rer. nat., Plant Biology, Technical University Munich, Germany
  • 1996: Diploma, Botany, Technical University Munich, Germany
{{tab=Publications}
  2023 (1)
Isolation of Nuclei Tagged in Specific Cell Types (INTACT) in Arabidopsis. Benstein, R. M., Schmid, M., & You, Y. In Riechmann, J. L., & Ferrándiz, C., editor(s), Flower Development, volume 2686, pages 313–328. New York, NY, January 2023. Series Title: Methods in Molecular Biology
Isolation of Nuclei Tagged in Specific Cell Types (INTACT) in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
  2022 (3)
FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. André, D., Marcon, A., Lee, K. C., Goretti, D., Zhang, B., Delhomme, N., Schmid, M., & Nilsson, O. Current Biology, 32(13): 2988–2996.e4. July 2022. Publisher: Elsevier
FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees [link]Paper   doi   link   bibtex   abstract  
Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. Zacharaki, V., Ponnu, J., Crepin, N., Langenecker, T., Hagmann, J., Skorzinski, N., Musialak-Lange, M., Wahl, V., Rolland, F., & Schmid, M. New Phytologist, 235(1): 220–233. 2022.
Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant [link]Paper   doi   link   bibtex   abstract  
PICLN modulates alternative splicing and light/temperature responses in plants. Mateos, J. L, Sanchez, S. E, Legris, M., Esteve-Bruna, D., Torchio, J. C, Petrillo, E., Goretti, D., Blanco-Touriñán, N., Seymour, D. K, Schmid, M., Weigel, D., Alabadí, D., & Yanovsky, M. J Plant Physiology,kiac527. November 2022.
PICLN modulates alternative splicing and light/temperature responses in plants [link]Paper   doi   link   bibtex   abstract  
  2021 (4)
Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges. Pandey, S. P., Benstein, R. M, Wang, Y., & Schmid, M. Journal of Experimental Botany, 72(21): 7482–7497. May 2021.
Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges [link]Paper   doi   link   bibtex   abstract   8 downloads  
Insights into the role of alternative splicing in plant temperature response. Dikaya, V., El Arbi, N., Rojas-Murcia, N., Nardeli, S. M., Goretti, D., & Schmid, M. Journal of Experimental Botany, 72(21): 7384–7403. November 2021.
Insights into the role of alternative splicing in plant temperature response [link]Paper   doi   link   bibtex   abstract   12 downloads  
Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Muralidhara, P., Weiste, C., Collani, S., Krischke, M., Kreisz, P., Draken, J., Feil, R., Mair, A., Teige, M., Müller, M. J., Schmid, M., Becker, D., Lunn, J. E., Rolland, F., Hanson, J., & Dröge-Laser, W. Proceedings of the National Academy of Sciences, 118(37). September 2021.
Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling [link]Paper   doi   link   bibtex   abstract   6 downloads  
miRNA Mediated Regulation and Interaction between Plants and Pathogens. Yang, X., Zhang, L., Yang, Y., Schmid, M., & Wang, Y. International Journal of Molecular Sciences, 22(6): 2913. March 2021.
miRNA Mediated Regulation and Interaction between Plants and Pathogens [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2020 (4)
A gibberellin methyltransferase modulates the timing of floral transition at the Arabidopsis shoot meristem. Lee, J. E., Goretti, D., Neumann, M., Schmid, M., & You, Y. Physiologia Plantarum, 170(4): 474–487. December 2020.
A gibberellin methyltransferase modulates the timing of floral transition at the Arabidopsis shoot meristem [link]Paper   doi   link   bibtex   3 downloads  
Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. Brunoni, F., Collani, S., Casanova‐Sáez, R., Šimura, J., Karady, M., Schmid, M., Ljung, K., & Bellini, C. New Phytologist, 226(6): 1753–1765. June 2020.
Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis [link]Paper   doi   link   bibtex   2 downloads  
TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem. Goretti, D., Silvestre, M., Collani, S., Langenecker, T., Méndez, C., Madueño, F., & Schmid, M. Plant Physiology, 182(4): 2081–2095. April 2020.
TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem [link]Paper   doi   link   bibtex   2 downloads  
The trehalose 6‐phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. Ponnu, J., Schlereth, A., Zacharaki, V., Działo, M. A., Abel, C., Feil, R., Schmid, M., & Wahl, V. The Plant Journal, 104(3): 768–780. November 2020.
The trehalose 6‐phosphate pathway impacts vegetative phase change in <i>Arabidopsis thaliana</i> [link]Paper   doi   link   bibtex   2 downloads  
  2019 (4)
A bacterial assay for rapid screening of IAA catabolic enzymes. Brunoni, F., Collani, S., Šimura, J., Schmid, M., Bellini, C., & Ljung, K. Plant Methods, 15(1): 126. December 2019.
A bacterial assay for rapid screening of IAA catabolic enzymes [link]Paper   doi   link   bibtex   abstract  
CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. Lee, J. E., Neumann, M., Duro, D. I., & Schmid, M. PLOS ONE, 14(9): e0222778. September 2019.
CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants [link]Paper   doi   link   bibtex   4 downloads  
FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. Collani, S., Neumann, M., Yant, L., & Schmid, M. Plant Physiology, 180(1): 367–380. May 2019.
FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD [link]Paper   doi   link   bibtex  
Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. You, Y., Sawikowska, A., Lee, J. E., Benstein, R. M., Neumann, M., Krajewski, P., & Schmid, M. The Plant Cell, 31(2): 325–345. February 2019.
Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering [link]Paper   doi   link   bibtex   3 downloads  
  2018 (5)
Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. Speth, C., Szabo, E. X., Martinho, C., Collani, S., zur Oven-Krockhaus, S., Richter, S., Droste-Borel, I., Macek, B., Stierhof, Y., Schmid, M., Liu, C., & Laubinger, S. eLife, 7: e37078. August 2018.
Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes [link]Paper   doi   link   bibtex   abstract  
PORCUPINE regulates development in response to temperature through alternative splicing. Capovilla, G., Delhomme, N., Collani, S., Shutava, I., Bezrukov, I., Symeonidi, E., de Francisco Amorim, M., Laubinger, S., & Schmid, M. Nature Plants, 4(8): 534–539. August 2018.
PORCUPINE regulates development in response to temperature through alternative splicing [link]Paper   doi   link   bibtex  
Ricinosomes and Aleurain-Containing Vacuoles (ACVs): Protease-Storing Organelles. Gietl, C., Schmid, M., & Simpson, D. In Annual Plant Reviews online, pages 96–118. American Cancer Society, 2018. Section: 5 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119312994.apr0039
Ricinosomes and Aleurain-Containing Vacuoles (ACVs): Protease-Storing Organelles [link]Paper   doi   link   bibtex   abstract  
Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. Shanks, C. M., Hecker, A., Cheng, C., Brand, L., Collani, S., Schmid, M., Schaller, G. E., Wanke, D., Harter, K., & Kieber, J. J. The Plant Journal, 95(3): 458–473. August 2018.
Role of <i>BASIC PENTACYSTEINE</i> transcription factors in a subset of cytokinin signaling responses [link]Paper   doi   link   bibtex  
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. Prát, T., Hajný, J., Grunewald, W., Vasileva, M., Molnár, G., Tejos, R., Schmid, M., Sauer, M., & Friml, J. PLOS Genetics, 14(1): e1007177. January 2018.
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity [link]Paper   doi   link   bibtex  
  2017 (4)
A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Conn, V. M., Hugouvieux, V., Nayak, A., Conos, S. A., Capovilla, G., Cildir, G., Jourdain, A., Tergaonkar, V., Schmid, M., Zubieta, C., & Conn, S. J. Nature Plants, 3(5): 17053. May 2017.
A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation [link]Paper   doi   link   bibtex  
Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. Capovilla, G., Symeonidi, E., Wu, R., & Schmid, M. Journal of Experimental Botany, 68(18): 5117–5127. November 2017.
Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana [link]Paper   doi   link   bibtex  
Dynamics of H3K4me3 Chromatin Marks Prevails over H3K27me3 for Gene Regulation during Flower Morphogenesis in Arabidopsis thaliana. Engelhorn, J., Blanvillain, R., Kröner, C., Parrinello, H., Rohmer, M., Posé, D., Ott, F., Schmid, M., & Carles, C. C. Epigenomes, 1(2): 8. September 2017. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute
Dynamics of H3K4me3 Chromatin Marks Prevails over H3K27me3 for Gene Regulation during Flower Morphogenesis in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. You, Y., Sawikowska, A., Neumann, M., Posé, D., Capovilla, G., Langenecker, T., Neher, R. A., Krajewski, P., & Schmid, M. Nature Communications, 8(1): 15120. August 2017.
Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering [link]Paper   doi   link   bibtex   2 downloads  
  2016 (2)
A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Sayou, C., Nanao, M. H., Jamin, M., Posé, D., Thévenon, E., Grégoire, L., Tichtinsky, G., Denay, G., Ott, F., Peirats Llobet, M., Schmid, M., Dumas, R., & Parcy, F. Nature Communications, 7(1): 11222. September 2016.
A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor [link]Paper   doi   link   bibtex  
Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. Pfeiffer, A., Janocha, D., Dong, Y., Medzihradszky, A., Schöne, S., Daum, G., Suzaki, T., Forner, J., Langenecker, T., Rempel, E., Schmid, M., Wirtz, M., Hell, R., & Lohmann, J. U eLife, 5: e17023. July 2016.
Integration of light and metabolic signals for stem cell activation at the shoot apical meristem [link]Paper   doi   link   bibtex   abstract  
  2015 (6)
A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. Leal Valentim, F., Mourik, S., Pose, D., Kim, M. C., Schmid, M., van Ham, R. C., Busscher, M., Sanchez-Perez, G. F., Molenaar, J., Angenent, G. C., Immink, R. G., & van Dijk, A. D. PLoS One, 10(2): e0116973. 2015. Edition: 2015/02/27
A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network [link]Paper   doi   link   bibtex   abstract   1 download  
Control of flowering by ambient temperature. Capovilla, G., Schmid, M., & Pose, D. J Exp Bot, 66(1): 59–69. January 2015. Edition: 2014/10/19
Control of flowering by ambient temperature [link]Paper   doi   link   bibtex   abstract  
Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana. Galvao, V. C., Collani, S., Horrer, D., & Schmid, M. Plant J, 84(5): 949–62. December 2015. Edition: 2015/10/16
Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. Lutz, U., Posé, D., Pfeifer, M., Gundlach, H., Hagmann, J., Wang, C., Weigel, D., Mayer, K. F. X., Schmid, M., & Schwechheimer, C. PLOS Genetics, 11(10): e1005588. 2015. Publisher: Public Library of Science
Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M [link]Paper   doi   link   bibtex   abstract  
Profiling of embryonic nuclear vs. cellular RNA in Arabidopsis thaliana. Slane, D., Kong, J., Schmid, M., Jürgens, G., & Bayer, M. Genomics Data, 4: 96–98. June 2015.
doi   link   bibtex   abstract  
Role of alternative pre-mRNA splicing in temperature signaling. Capovilla, G., Pajoro, A., Immink, R. G., & Schmid, M. Curr Opin Plant Biol, 27: 97–103. October 2015. Edition: 2015/07/21
Role of alternative pre-mRNA splicing in temperature signaling [link]Paper   doi   link   bibtex   abstract  
  2014 (3)
Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo. Slane, D., Kong, J., Berendzen, K. W., Kilian, J., Henschen, A., Kolb, M., Schmid, M., Harter, K., Mayer, U., De Smet, I., Bayer, M., & Jürgens, G. Development (Cambridge, England), 141(24): 4831–4840. December 2014.
doi   link   bibtex   abstract  
Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Zhurov, V., Navarro, M., Bruinsma, K. A., Arbona, V., Santamaria, M. E., Cazaux, M., Wybouw, N., Osborne, E. J., Ens, C., Rioja, C., Vermeirssen, V., Rubio-Somoza, I., Krishna, P., Diaz, I., Schmid, M., Gómez-Cadenas, A., Van de Peer, Y., Grbic, M., Clark, R. M., Van Leeuwen, T., & Grbic, V. Plant Physiology, 164(1): 384–399. January 2014.
doi   link   bibtex   abstract  
Regulation of Flowering by Endogenous Signals. Galvão, V., & Schmid, M. In Advances in Botanical Research, volume 72, pages 63–102. December 2014. Journal Abbreviation: Advances in Botanical Research
doi   link   bibtex   abstract  
  2013 (3)
Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., Feil, R., Lunn, J. E., Stitt, M., & Schmid, M. Science (New York, N.Y.), 339(6120): 704–707. February 2013.
doi   link   bibtex   abstract   2 downloads  
Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Lee, J. H., Ryu, H., Chung, K. S., Posé, D., Kim, S., Schmid, M., & Ahn, J. H. Science (New York, N.Y.), 342(6158): 628–632. November 2013.
doi   link   bibtex   abstract   1 download  
Temperature-dependent regulation of flowering by antagonistic FLM variants. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C., Immink, R. G. H., & Schmid, M. Nature, 503(7476): 414–417. November 2013.
doi   link   bibtex   abstract   2 downloads  
  2012 (7)
Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Immink, R. G. H., Posé, D., Ferrario, S., Ott, F., Kaufmann, K., Valentim, F. L., de Folter, S., van der Wal, F., van Dijk, A. D. J., Schmid, M., & Angenent, G. C. Plant Physiology, 160(1): 433–449. September 2012.
doi   link   bibtex   abstract  
Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Brandt, R., Salla-Martret, M., Bou-Torrent, J., Musielak, T., Stahl, M., Lanz, C., Ott, F., Schmid, M., Greb, T., Schwarz, M., Choi, S., Barton, M. K., Reinhart, B. J., Liu, T., Quint, M., Palauqui, J., Martínez-García, J. F., & Wenkel, S. The Plant Journal: For Cell and Molecular Biology, 72(1): 31–42. October 2012.
doi   link   bibtex   abstract  
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors[W]. Yu, S., Galvão, V. C., Zhang, Y., Horrer, D., Zhang, T., Hao, Y., Feng, Y., Wang, S., Schmid, M., & Wang, J. The Plant Cell, 24(8): 3320–3332. August 2012.
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors[W] [link]Paper   doi   link   bibtex   abstract  
Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Galvão, V. C., Horrer, D., Küttner, F., & Schmid, M. Development (Cambridge, England), 139(21): 4072–4082. November 2012.
doi   link   bibtex   abstract  
Synteny-based mapping-by-sequencing enabled by targeted enrichment. Galvão, V. C., Nordström, K. J. V., Lanz, C., Sulz, P., Mathieu, J., Posé, D., Schmid, M., Weigel, D., & Schneeberger, K. The Plant Journal: For Cell and Molecular Biology, 71(3): 517–526. August 2012.
doi   link   bibtex   abstract  
The end of innocence: flowering networks explode in complexity. Posé, D., Yant, L., & Schmid, M. Current Opinion in Plant Biology, 15(1): 45–50. February 2012.
doi   link   bibtex   abstract  
The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Dinh, T. T., Girke, T., Liu, X., Yant, L., Schmid, M., & Chen, X. Development (Cambridge, England), 139(11): 1978–1986. June 2012.
doi   link   bibtex   abstract  
  2011 (4)
Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., Blanchet, S., Bastien, O., Thévenon, E., Weigel, D., Schmid, M., & Parcy, F. The Plant Cell, 23(4): 1293–1306. April 2011.
doi   link   bibtex   abstract  
Regulation of flowering time: all roads lead to Rome. Srikanth, A., & Schmid, M. Cellular and molecular life sciences: CMLS, 68(12): 2013–2037. June 2011.
doi   link   bibtex   abstract   2 downloads  
The control of developmental phase transitions in plants. Huijser, P., & Schmid, M. Development (Cambridge, England), 138(19): 4117–4129. October 2011.
doi   link   bibtex   abstract   1 download  
Trehalose-6-phosphate: connecting plant metabolism and development. Ponnu, J., Wahl, V., & Schmid, M. Frontiers in Plant Science, 2: 70. 2011.
doi   link   bibtex   abstract  
  2010 (4)
Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Koo, S. C., Bracko, O., Park, M. S., Schwab, R., Chun, H. J., Park, K. M., Seo, J. S., Grbic, V., Balasubramanian, S., Schmid, M., Godard, F., Yun, D., Lee, S. Y., Cho, M. J., Weigel, D., & Kim, M. C. The Plant Journal: For Cell and Molecular Biology, 62(5): 807–816. June 2010.
doi   link   bibtex   abstract  
MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Schlereth, A., Möller, B., Liu, W., Kientz, M., Flipse, J., Rademacher, E. H., Schmid, M., Jürgens, G., & Weijers, D. Nature, 464(7290): 913–916. April 2010.
doi   link   bibtex   abstract  
Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Yant, L., Mathieu, J., Dinh, T. T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. The Plant Cell, 22(7): 2156–2170. July 2010.
doi   link   bibtex   abstract   1 download  
The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. Wahl, V., Brand, L. H., Guo, Y., & Schmid, M. BMC plant biology, 10: 285. December 2010.
doi   link   bibtex   abstract  
  2009 (2)
Just say no: floral repressors help Arabidopsis bide the time. Yant, L., Mathieu, J., & Schmid, M. Current Opinion in Plant Biology, 12(5): 580–586. October 2009.
doi   link   bibtex   abstract  
Repression of flowering by the miR172 target SMZ. Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F., & Schmid, M. PLoS biology, 7(7): e1000148. July 2009.
doi   link   bibtex   abstract   1 download  
  2008 (3)
Auxin Responses in Mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 Signalosome. Dohmann, E. M. N., Levesque, M. P., Isono, E., Schmid, M., & Schwechheimer, C. Plant Physiology, 147(3): 1369–1379. July 2008.
Auxin Responses in Mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 Signalosome [link]Paper   doi   link   bibtex   abstract  
KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M. J., & Gietl, C. American Journal of Botany, 95(9): 1049–1062. 2008. _eprint: https://bsapubs.onlinelibrary.wiley.com/doi/pdf/10.3732/ajb.2007404
KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds [link]Paper   doi   link   bibtex   abstract  
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Dohmann, E. M. N., Levesque, M. P., De Veylder, L., Reichardt, I., Jürgens, G., Schmid, M., & Schwechheimer, C. Development (Cambridge, England), 135(11): 2013–2022. June 2008.
doi   link   bibtex   abstract  
  2007 (2)
Distinct expression patterns of natural antisense transcripts in Arabidopsis. Henz, S. R., Cumbie, J. S., Kasschau, K. D., Lohmann, J. U., Carrington, J. C., Weigel, D., & Schmid, M. Plant Physiology, 144(3): 1247–1255. July 2007.
doi   link   bibtex   abstract  
Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. Current biology: CB, 17(12): 1055–1060. June 2007.
doi   link   bibtex   abstract  
  2005 (4)
A gene expression map of Arabidopsis thaliana development. Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., & Lohmann, J. U. Nature Genetics, 37(5): 501–506. May 2005.
doi   link   bibtex   abstract  
Diversity of flowering responses in wild Arabidopsis thaliana strains. Lempe, J., Balasubramanian, S., Sureshkumar, S., Singh, A., Schmid, M., & Weigel, D. PLoS genetics, 1(1): 109–118. July 2005.
doi   link   bibtex   abstract  
Integration of spatial and temporal information during floral induction in Arabidopsis. Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., & Weigel, D. Science (New York, N.Y.), 309(5737): 1056–1059. August 2005.
doi   link   bibtex   abstract  
Specific effects of microRNAs on the plant transcriptome. Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. Developmental Cell, 8(4): 517–527. April 2005.
doi   link   bibtex   abstract  
  2003 (3)
AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Schumann, U., Wanner, G., Veenhuis, M., Schmid, M., & Gietl, C. Proceedings of the National Academy of Sciences of the United States of America, 100(16): 9626–9631. August 2003.
doi   link   bibtex   abstract  
Dissection of floral induction pathways using global expression analysis. Schmid, M., Uhlenhaut, N. H., Godard, F., Demar, M., Bressan, R., Weigel, D., & Lohmann, J. U. Development (Cambridge, England), 130(24): 6001–6012. December 2003.
doi   link   bibtex   abstract  
Genome-wide insertional mutagenesis of Arabidopsis thaliana. Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., & Ecker, J. R. Science (New York, N.Y.), 301(5633): 653–657. August 2003.
doi   link   bibtex   abstract  
  2001 (2)
Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Gietl, C., & Schmid, M. Naturwissenschaften, 88(2): 49–58. February 2001.
Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues [link]Paper   doi   link   bibtex   abstract  
The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Schmid, M., Simpson, D. J., Sarioglu, H., Lottspeich, F., & Gietl, C. Proceedings of the National Academy of Sciences, 98(9): 5353–5358. April 2001. Publisher: National Academy of Sciences Section: Biological Sciences
The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum [link]Paper   doi   link   bibtex   abstract  
  1999 (1)
Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Schmid, M., Simpson, D., & Gietl, C. Proceedings of the National Academy of Sciences, 96(24): 14159–14164. November 1999. Publisher: National Academy of Sciences Section: Biological Sciences
Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes [link]Paper   doi   link   bibtex   abstract  
  1998 (2)
A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Schmid, M., Simpson, D., Kalousek, F., & Gietl, C. Planta, 206(3): 466–475. October 1998.
doi   link   bibtex   abstract  
The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Wimmer, C., Schmid, M., Veenhuis, M., & Gietl, C. The Plant Journal, 16(4): 453–464. 1998. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313x.1998.00320.x
The plant PTS1 receptor: similarities and differences to its human and yeast counterparts [link]Paper   doi   link   bibtex   abstract