{tab=Research}

Catherine Bellini in a park in front of a treeMy research focusses on two different areas using the plant model system Arabidopsis thaliana, and more recently hybrid aspen and Norway spruce. The first project which is developed at the Umeå Plant Science Center, aims at tackling the regulation of adventitious root initiation, which is a key limiting step during vegetative propagation of economically important tree species.
The second aspect, which started at the UPSC, but is now pursued in the CATS group (Carbon Allocation Transport and Signaling) headed by Dr. Sylvie Dinant at the Jean-Pierre Bourgin Institute (IJPB, from the INRAE centre in Versailles, France) focus more specifically on sugar transport and carbon allocation, and their role on plant development and interaction with the environment.

Deciphering molecular cross-talks that control adventitious root initiation

Adventitious roots (AR) are roots that develop on any organs but roots and are required for vegetative propagation of plants. Their initiation and development are limiting steps for the clonal propagation of many economically important tree species. They initiate from differentiated cells of aerial plant organs following several steps that include cell dedifferentiation, reprogramming, division and differentiation. Adventitious rooting is a quantitative genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We used Arabidopsis as a model system to decipher the molecular cross-talks that control AR initiation. We have identified regulatory genes acting at several levels, including subunits of the COP9 signalosome (CSN) required for protein degradation, genes acting at the crosstalk of auxin, jasmonate and cytokinin signalling pathways. We are also interested in understanding how light signalling interacts with hormone signalling in the regulation of AR initiation. In parallel we study AR initiation in hybrid aspen, hybrid poplar and Norway spruce seedlings. In the frame of proof-of-concept projects we confirmed that the genes identified in the model system Arabidopsis, play a role in adventitious root formation in poplar cutting meaning that our basic research could lead to improvement of vegetative propagation of horticultural and forest species.

Collage of two photos showing on the left Arabidopsis seedlings from the side on a black background and on the right poplar cuttings growing in a box on transparent culture medium and pictured from below Left: Arabidopsis etiolated seedlings showing adventitious roots on the hypocotyl (adapted from Gutierrez et al 2009, Plant Cell); right: Adventitious roots on in vitro poplar cuttings (photo: Sanaria Alallaq)Schematic model showing the involved molecular components involved in adventitious root initiationTIR1/AFB2-Aux/IAA6/9/17-ARF6/8 and ARF17 signaling module is involved in the control of adventitious root initiation upstream of GH3.3, GH3.5 and GH3. (adapted from Lakehal et al. 2019; https://doi.org/10.1016/j.molp.2019.09.001)

Carbon allocation, transport and signaling (CATS team, IJPB)

In land plants, carbon allocation from the photosynthetic organs to the other organs is an integrative process enabling the plant to adjust the delivery of carbon and energetic resources depending on the plant development and environmental constraints. Thereby, carbon allocation coordinates use and storage of sugars at various scales, from the cell to the whole organism. Our goal is to determine, in the different plant organs, the mechanisms acting at a cellular, tissue and organ levels for the allocation of carbohydrates. We focus on the gene networks involved in this process and their coupling with other nutritional and developmental mechanisms, in relationship with adaptive anatomic and metabolic adjustments.

Collage of five microscope pictures of stem sections in coloured in red (left photo) and showing phloem and xylem tissues on the right photos either with lower resolution on the top and with higher resolution on the bottom. Left: Confocal image of a cross section of the basal part of the floral stem from a wild-type plant. The section was stained with blue alcian and Safranin O, and its autofluorescence was collected between 512-590 nm. (Photo: Rozenn Le Hir); right: The SWEET11-1 and SWEET12-1 genes are expressed in the phloem and the xylem tissues (Le Hir et al., 2015 Mol Plant 8, 11: 1687-1690). ph: phloem, xy: xylem.

Key Publications

  • Lakehal A, Dod A, Raneshan Z, Alallaq S, Novák O, Escamez S, Strnad M, Tuominen H and Bellini C (2020) ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. BioRxiv 12.27.886796 - https://doi.org/10.1101/2019.12.27.886796
  • Brunoni F, Casanova-Sáez R, Šimura J, Karady M, Collani S, Ljung K* and Bellini C* (2020) Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist. https://doi.org/10.1111/nph.16463
  • Lakehal L, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novak O, Pacurar DI, Perrone I, Jobert F, Gutierrez L, Bako L, Bellini C (2019) A molecular framework for TIR1/AFB-Aux/IAA-dependent auxin sensing controlling adventitious rooting in Arabidopsis. Molecular Plant 12 (11), 1499-1514. https://doi.org/10.1016/j.molp.2019.09.001
  • Aubry E, Dinant S, Vilaine F, Bellini C and Le Hir R (2019) Lateral transport of organic and inorganic solutes. Plants 8, 20, https://doi.org/10.3390/plants8010020.
  • Dinant S, De Marco F, Wolff N, Vilaine F, Gissot L, Aubry E, Sandt C, Bellini C and Le Hir R (2019) Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues. Journal of Experimental Botany 70:871-884. https://doi.org/10.1093/jxb/ery396
  • Le Hir R, Spinner L, Klemens PAW, Chakraborti D, De Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C, Téoulé E, Chabout S, Mouille G, Neuhaus HE, Dinant S and Bellini C (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular developments and freezing tolerance in Arabidopsis. Molecular Plant 8:1687-1690. https://doi.org/10.1016/j.molp.2015.08.007
{tab=Team}
  • Personnel Image
    Agrawal, Dhruv
    PostDoc
    E-mail
    Room: B6-44-45
  • Personnel Image
    Bellini, Catherine
    Professor UmU & Senior Scientist INRAE
    E-mail
    Room: B5-36-45
    Website
  • Personnel Image
    Gaddam, Subash Reddy
    PostDoc
    E-mail
    Room: B6-20-45
  • Personnel Image
    Kidwai, Maria
    PostDoc
    E-mail
    Room: C4-29-40

{tab=CV C. Bellini}

Education and academic degrees

  • 2005 Docent, Plant Developmental Biology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
  • 1998 Habilitation à Diriger des Recherches, Paris XI University, Orsay, France (HDR, equivalent to Swedish docent qualification)
  • 1989 PhD in Plant Cell and Molecular Biology, Paris XI University, Orsay France.
  • 1986 Masters degree in Genetics and Physiology of Microorganisms, Paris XI University, Orsay, France
  • 1985 Masters degree in Agronomy and Master degree of agricultural engineering. National College of Agronomy and Food Industry of Nancy (ENSAIA, Nancy, France).

Employments

  • 2015 - present: Chairman of UPSC board
  • 2009 - present: Professor, Umeå University, Sweden (50%)
  • 1989 - present: Research Scientist (DR1), IJPB, INRAE, Versailles, France (50%)

Special Awards and Honours

  • 2016-2019 Prime d’Encadrement Doctoral et de Recherche (PEDR) catégorie B.
  • 2003-2004 Recipient of a Senior Scientist Marie Curie Individual Fellowship (FP5)
  • 1989-1991 Recipient of a Junior scientist Marie Curie Individual Fellowship (FP4)
{tab=Publications}
  2023 (2)
Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. Zeng, Y., Verstraeten, I., Trinh, H. K., Lardon, R., Schotte, S., Olatunji, D., Heugebaert, T., Stevens, C., Quareshy, M., Napier, R., Nastasi, S. P., Costa, A., De Rybel, B., Bellini, C., Beeckman, T., Vanneste, S., & Geelen, D. New Phytologist, 240(5): 1883–1899. October 2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/nph.19292
Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation [link]Paper   doi   link   bibtex   abstract  
Species-specific transcriptional reprogramming during adventitious root initiation. Kidwai, M., Mishra, P., & Bellini, C. Trends in Plant Science, 28(2): 128–130. February 2023.
Species-specific transcriptional reprogramming during adventitious root initiation [link]Paper   doi   link   bibtex   abstract  
  2022 (4)
A vacuolar hexose transport is required for xylem development in the inflorescence stem. Aubry, E., Hoffmann, B., Vilaine, F., Gilard, F., Klemens, P. A W, Guérard, F., Gakière, B., Neuhaus, H E., Bellini, C., Dinant, S., & Le Hir, R. Plant Physiology, 188(2): 1229–1247. February 2022.
A vacuolar hexose transport is required for xylem development in the inflorescence stem [link]Paper   doi   link   bibtex   abstract  
Editorial: Advances on the Biological Mechanisms Involved in Adventitious Root Formation: From Signaling to Morphogenesis. Cardoso, H., Peixe, A., Bellini, C., Porfírio, S., & Druege, U. Frontiers in Plant Science, 13. 2022.
Editorial: Advances on the Biological Mechanisms Involved in Adventitious Root Formation: From Signaling to Morphogenesis [link]Paper   doi   link   bibtex  
Molecular basis of differential adventitious rooting competence in poplar genotypes. Ranjan, A., Perrone, I., Alallaq, S., Singh, R., Rigal, A., Brunoni, F., Chitarra, W., Guinet, F., Kohler, A., Martin, F., Street, N. R, Bhalerao, R., Legué, V., & Bellini, C. Journal of Experimental Botany, 73(12): 4046–4064. June 2022.
Molecular basis of differential adventitious rooting competence in poplar genotypes [link]Paper   doi   link   bibtex   abstract  
Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. Chardon, F., De Marco, F., Marmagne, A., Le Hir, R., Vilaine, F., Bellini, C., & Dinant, S. Journal of Plant Physiology, 273: 153707. June 2022.
Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability [link]Paper   doi   link   bibtex   abstract  
  2021 (2)
Adventitious Rooting in Populus Species: Update and Perspectives. Bannoud, F., & Bellini, C. Frontiers in Plant Science, 12. 2021.
Adventitious Rooting in Populus Species: Update and Perspectives [link]Paper   doi   link   bibtex   abstract   4 downloads  
Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis. Dob, A., Lakehal, A., Novak, O., & Bellini, C. Journal of Experimental Botany, 72(20): 7107–7118. July 2021.
Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis [link]Paper   doi   link   bibtex   abstract   12 downloads  
  2020 (4)
Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. Brunoni, F., Collani, S., Casanova‐Sáez, R., Šimura, J., Karady, M., Schmid, M., Ljung, K., & Bellini, C. New Phytologist, 226(6): 1753–1765. June 2020.
Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis [link]Paper   doi   link   bibtex   2 downloads  
ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. Lakehal, A., Dob, A., Rahneshan, Z., Novák, O., Escamez, S., Alallaq, S., Strnad, M., Tuominen, H., & Bellini, C. New Phytologist, 228(5): 1611–1626. 2020.
ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis [link]Paper   doi   link   bibtex   abstract   4 downloads  
Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators. Lakehal, A., Ranjan, A., & Bellini, C. In Champion, A., & Laplaze, L., editor(s), Jasmonate in Plant Biology, volume 2085, pages 3–22. Springer US, New York, NY, 2020.
Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators [link]Paper   link   bibtex  
Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. Alallaq, S., Ranjan, A., Brunoni, F., Novák, O., Lakehal, A., & Bellini, C. Frontiers in Plant Science, 11: 586140. September 2020.
Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings [link]Paper   doi   link   bibtex  
  2019 (7)
A DAO1-Mediated Circuit Controls Auxin and Jasmonate Crosstalk Robustness during Adventitious Root Initiation in Arabidopsis. Lakehal, A., Dob, A., Novák, O., & Bellini, C. International Journal of Molecular Sciences, 20(18): 4428. September 2019.
A DAO1-Mediated Circuit Controls Auxin and Jasmonate Crosstalk Robustness during Adventitious Root Initiation in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis. Lakehal, A., Chaabouni, S., Cavel, E., Le Hir, R., Ranjan, A., Raneshan, Z., Novák, O., Păcurar, D. I., Perrone, I., Jobert, F., Gutierrez, L., Bakó, L., & Bellini, C. Molecular Plant, 12(11): 1499–1514. November 2019.
A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis [link]Paper   doi   link   bibtex  
A bacterial assay for rapid screening of IAA catabolic enzymes. Brunoni, F., Collani, S., Šimura, J., Schmid, M., Bellini, C., & Ljung, K. Plant Methods, 15(1): 126. December 2019.
A bacterial assay for rapid screening of IAA catabolic enzymes [link]Paper   doi   link   bibtex   abstract  
Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Lakehal, A., & Bellini, C. Physiologia Plantarum, 165(1): 90–100. January 2019.
Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions [link]Paper   doi   link   bibtex  
Control of root meristem establishment in conifers. Brunoni, F., Ljung, K., & Bellini, C. Physiologia Plantarum, 165(1): 81–89. January 2019.
Control of root meristem establishment in conifers [link]Paper   doi   link   bibtex  
Lateral Transport of Organic and Inorganic Solutes. Aubry, E., Dinant, S., Vilaine, F., Bellini, C., & Le Hir, R. Plants, 8(1): 20. January 2019.
Lateral Transport of Organic and Inorganic Solutes [link]Paper   doi   link   bibtex   abstract  
Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues. Dinant, S, Wolff, N, De Marco, F, Vilaine, F, Gissot, L, Aubry, E, Sandt, C, Bellini, C., & Le Hir, R Journal of Experimental Botany, 70(3): 871–884. February 2019.
Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues [link]Paper   doi   link   bibtex  
  2018 (1)
Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Rahneshan, Z., Nasibi, F., Lakehal, A., & Bellini, C. Acta Physiologiae Plantarum, 40(9): 172. September 2018.
Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes [link]Paper   doi   link   bibtex  
  2017 (2)
At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Le Hir, R., Castelain, M., Chakraborti, D., Moritz, T., Dinant, S., & Bellini, C. Physiologia Plantarum, 160(3): 312–327. July 2017.
At <i>bHLH68</i> transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in <i>Arabidopsis thaliana</i> [link]Paper   doi   link   bibtex  
The Arabidopsis Cop9 signalosome subunit 4 (CSN4) is involved in adventitious root formation. Pacurar, D. I., Pacurar, M. L., Lakehal, A., Pacurar, A. M., Ranjan, A., & Bellini, C. Scientific Reports, 7(1): 628. December 2017.
The Arabidopsis Cop9 signalosome subunit 4 (CSN4) is involved in adventitious root formation [link]Paper   doi   link   bibtex  
  2015 (1)
Disruption of the Sugar Transporters AtSWEET11 and AtSWEET12 Affects Vascular Development and Freezing Tolerance in Arabidopsis. Le Hir, R., Spinner, L., Klemens, P. A., Chakraborti, D., de Marco, F., Vilaine, F., Wolff, N., Lemoine, R., Porcheron, B., Gery, C., Teoule, E., Chabout, S., Mouille, G., Neuhaus, H. E., Dinant, S., & Bellini, C. Mol Plant, 8(11): 1687–90. November 2015. Edition: 2015/09/12
Disruption of the Sugar Transporters AtSWEET11 and AtSWEET12 Affects Vascular Development and Freezing Tolerance in Arabidopsis [link]Paper   doi   link   bibtex  
  2014 (5)
A Novel Viable Allele of Arabidopsis CULLIN1 Identified in a Screen for Superroot2 Suppressors by Next Generation Sequencing-Assisted Mapping. Pacurar, D. I., Pacurar, M. L., Pacurar, A. M., Gutierrez, L., & Bellini, C. PLoS ONE, 9(6): e100846. June 2014.
A Novel Viable Allele of Arabidopsis CULLIN1 Identified in a Screen for Superroot2 Suppressors by Next Generation Sequencing-Assisted Mapping [link]Paper   doi   link   bibtex  
Adventitious Roots and Lateral Roots: Similarities and Differences. Bellini, C., Pacurar, D. I., & Perrone, I. Annual Review of Plant Biology, 65(1): 639–666. April 2014.
Adventitious Roots and Lateral Roots: Similarities and Differences [link]Paper   doi   link   bibtex  
Auxin is a central player in the hormone cross-talks that control adventitious rooting. Pacurar, D. I., Perrone, I., & Bellini, C. Physiologia Plantarum, 151(1): 83–96. May 2014.
Auxin is a central player in the hormone cross-talks that control adventitious rooting [link]Paper   doi   link   bibtex  
Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Mauriat, M., Petterle, A., Bellini, C., & Moritz, T. The Plant Journal, 78(3): 372–384. May 2014.
Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport [link]Paper   doi   link   bibtex  
Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. Pacurar, D. I., Pacurar, M. L., Bussell, J. D., Schwambach, J., Pop, T. I., Kowalczyk, M., Gutierrez, L., Cavel, E., Chaabouni, S., Ljung, K., Fett-Neto, A. G., Pamfil, D., & Bellini, C. Journal of Experimental Botany, 65(6): 1605–1618. April 2014.
Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation [link]Paper   doi   link   bibtex   abstract  
  2013 (4)
ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. Le Hir, R., Sorin, C., Chakraborti, D., Moritz, T., Schaller, H., Tellier, F., Robert, S., Morin, H., Bakó, L., & Bellini, C. The Plant Journal, 76(5): 811–824. December 2013.
ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis [link]Paper   doi   link   bibtex  
Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Chardon, F., Bedu, M., Calenge, F., Klemens, P., Spinner, L., Clement, G., Chietera, G., Léran, S., Ferrand, M., Lacombe, B., Loudet, O., Dinant, S., Bellini, C., Neuhaus, H., Daniel-Vedele, F., & Krapp, A. Current Biology, 23(8): 697–702. April 2013.
Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis [link]Paper   doi   link   bibtex  
Overexpression of the Vacuolar Sugar Carrier AtSWEET16 Modifies Germination, Growth, and Stress Tolerance in Arabidopsis. Klemens, P. A., Patzke, K., Deitmer, J., Spinner, L., Le Hir, R., Bellini, C., Bedu, M., Chardon, F., Krapp, A., & Neuhaus, H. E. Plant Physiology, 163(3): 1338–1352. October 2013.
Overexpression of the Vacuolar Sugar Carrier <i>AtSWEET16</i> Modifies Germination, Growth, and Stress Tolerance in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
The Plant-Specific Dof Transcription Factors Family: New Players Involved in Vascular System Development and Functioning in Arabidopsis. Le Hir, R., & Bellini, C. Frontiers in Plant Science, 4. 2013.
The Plant-Specific Dof Transcription Factors Family: New Players Involved in Vascular System Development and Functioning in Arabidopsis [link]Paper   doi   link   bibtex  
  2012 (4)
A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. Păcurar, D. I., Păcurar, M. L., Street, N., Bussell, J. D., Pop, T. I., Gutierrez, L., & Bellini, C. Journal of Experimental Botany, 63(7): 2491–2501. April 2012.
A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions [link]Paper   doi   link   bibtex  
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis. Gutierrez, L., Mongelard, G., Floková, K., Păcurar, D. I., Novák, O., Staswick, P., Kowalczyk, M., Păcurar, M., Demailly, H., Geiss, G., & Bellini, C. The Plant Cell, 24(6): 2515–2527. June 2012.
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis [link]Paper   doi   link   bibtex   abstract  
The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Rigal, A., Yordanov, Y. S., Perrone, I., Karlberg, A., Tisserant, E., Bellini, C., Busov, V. B., Martin, F., Kohler, A., Bhalerao, R. P., & Legué, V. Plant Physiology, 160(4): 1996–2006. December 2012.
doi   link   bibtex   abstract  
The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis. Castelain, M., Le Hir, R., & Bellini, C. Physiologia Plantarum, 145(3): 450–460. July 2012.
The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis [link]Paper   doi   link   bibtex  
  2011 (2)
Agrobacterium tumefaciens: From crown gall tumors to genetic transformation. Păcurar, D. I., Thordal-Christensen, H., Păcurar, M. L., Pamfil, D., Botez, C., & Bellini, C. Physiological and Molecular Plant Pathology, 76(2): 76–81. August 2011.
Agrobacterium tumefaciens: From crown gall tumors to genetic transformation [link]Paper   doi   link   bibtex  
Auxin Control in the Formation of Adventitious Roots. Pop, T., Pamfil, D., & Bellini, C. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39: 307–316. June 2011.
doi   link   bibtex   abstract  
  2010 (2)
Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis. Keech, O., Pesquet, E., Gutierrez, L., Ahad, A., Bellini, C., Smith, S. M., & Gardeström, P. Plant Physiology, 154(4): 1710–1720. December 2010.
Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Contesto, C., Milesi, S., Mantelin, S., Zancarini, A., Desbrosses, G., Varoquaux, F., Bellini, C., Kowalczyk, M., & Touraine, B. Planta, 232(6): 1455–1470. November 2010.
The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum [link]Paper   doi   link   bibtex  
  2009 (2)
Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Guenin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., & Gutierrez, L. Journal of Experimental Botany, 60(2): 487–493. January 2009.
Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references [link]Paper   doi   link   bibtex  
Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance. Gutierrez, L., Bussell, J. D., Păcurar, D. I., Schwambach, J., Păcurar, M., & Bellini, C. The Plant Cell, 21(10): 3119–3132. December 2009.
Phenotypic Plasticity of Adventitious Rooting in <i>Arabidopsis</i> Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance [link]Paper   doi   link   bibtex   abstract  
  2008 (3)
Gene expression profiling: keys for investigating phloem functions. Le Hir, R., Beneteau, J., Bellini, C., Vilaine, F., & Dinant, S. Trends in Plant Science, 13(6): 273–280. June 2008.
Gene expression profiling: keys for investigating phloem functions [link]Paper   doi   link   bibtex  
The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Gutierrez, L., Mauriat, M., Gunin, S., Pelloux, J., Lefebvre, J., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C., & Van Wuytswinkel, O. Plant Biotechnology Journal, 6(6): 609–618. August 2008.
The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants [link]Paper   doi   link   bibtex  
Towards a Systematic Validation of References in Real-Time RT-PCR. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., & Van Wuytswinkel, O. The Plant Cell, 20(7): 1734–1735. July 2008.
Towards a Systematic Validation of References in Real-Time RT-PCR [link]Paper   doi   link   bibtex  
  2007 (2)
Combined networks regulating seed maturation. Gutierrez, L., Van Wuytswinkel, O., Castelain, M., & Bellini, C. Trends in Plant Science, 12(7): 294–300. July 2007.
Combined networks regulating seed maturation [link]Paper   doi   link   bibtex  
Comprehensive Screening of Arabidopsis Mutants Suggests the Lysine Histidine Transporter 1 to Be Involved in Plant Uptake of Amino Acids. Svennerstam, H., Ganeteg, U., Bellini, C., & Näsholm, T. Plant Physiology, 143(4): 1853–1860. April 2007.
Comprehensive Screening of Arabidopsis Mutants Suggests the Lysine Histidine Transporter 1 to Be Involved in Plant Uptake of Amino Acids [link]Paper   doi   link   bibtex   abstract  
  2006 (1)
Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Sorin, C., Negroni, L., Balliau, T., Corti, H., Jacquemot, M. P., Davanture, M., Sandberg, G., Zivy, M., & Bellini, C. Plant Physiology, 140(1): 349–364. January 2006. Place: Rockville Publisher: Amer Soc Plant Biologists WOS:000234492100031
doi   link   bibtex   abstract  
  2005 (2)
Auxin and Light Control of Adventitious Rooting in Arabidopsis Require ARGONAUTE1. Sorin, C., Bussell, J. D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., McKhann, H., Garcion, C., Vaucheret, H., Sandberg, G., & Bellini, C. The Plant Cell, 17(5): 1343–1359. May 2005.
Auxin and Light Control of Adventitious Rooting in Arabidopsis Require ARGONAUTE1 [link]Paper   doi   link   bibtex   abstract   1 download  
Integrative biology: dissecting cross-talk between plant signalling pathways. Bennett, M., Bellini, C., & Van Der Straeten, D. Physiologia Plantarum, 123(2): 109–110. February 2005. Place: Hoboken Publisher: Wiley WOS:000226966400001
doi   link   bibtex  
  2004 (1)
gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. Baud, S., Bellec, Y., Miquel, M., Bellini, C., Caboche, M., Lepiniec, L., Faure, J., & Rochat, C. EMBO reports, 5(5): 515–520. May 2004. Publisher: John Wiley & Sons, Ltd
gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase [link]Paper   doi   link   bibtex   abstract  
  2002 (3)
Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Schrick, K., Mayer, U., Martin, G., Bellini, C., Kuhnt, C., Schmidt, J., & Jürgens, G. The Plant Journal, 31(1): 61–73. 2002. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.2002.01333.x
Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Bellec, Y., Harrar, Y., Butaeye, C., Darnet, S., Bellini, C., & Faure, J. The Plant Journal, 32(5): 713–722. 2002. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.2002.01456.x
Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
The Arabidopsis TONNEAU2 Gene Encodes a Putative Novel Protein Phosphatase 2A Regulatory Subunit Essential for the Control of the Cortical Cytoskeleton. Camilleri, C., Azimzadeh, J., Pastuglia, M., Bellini, C., Grandjean, O., & Bouchez, D. The Plant Cell, 14(4): 833–845. April 2002.
The Arabidopsis TONNEAU2 Gene Encodes a Putative Novel Protein Phosphatase 2A Regulatory Subunit Essential for the Control of the Cortical Cytoskeleton [link]Paper   doi   link   bibtex   abstract  
  2001 (2)
FKBPs: at the crossroads of folding and transduction. Harrar, Y., Bellini, C., & Faure, J. Trends in Plant Science, 6(9): 426–431. September 2001.
FKBPs: at the crossroads of folding and transduction [link]Paper   doi   link   bibtex   abstract  
PASTICCINO1 (AtFKBP70) is a nuclear-localised immunophilin required during Arabidopsis thaliana embryogenesis. Carol, R. J., Breiman, A., Erel, N., Vittorioso, P., & Bellini, C. Plant Science, 161(3): 527–535. August 2001.
PASTICCINO1 (AtFKBP70) is a nuclear-localised immunophilin required during Arabidopsis thaliana embryogenesis [link]Paper   doi   link   bibtex   abstract  
  2000 (3)
AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Fagard, M., Boutet, S., Morel, J., Bellini, C., & Vaucheret, H. Proceedings of the National Academy of Sciences, 97(21): 11650–11654. October 2000. Publisher: National Academy of Sciences Section: Biological Sciences
AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals [link]Paper   doi   link   bibtex   abstract  
FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J., & Jürgens, G. Genes & Development, 14(12): 1471. June 2000. Publisher: Cold Spring Harbor Laboratory Press
FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis [link]Paper   link   bibtex   abstract  
The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G., & Bellini, C. Proceedings of the National Academy of Sciences, 97(26): 14819–14824. December 2000. Publisher: National Academy of Sciences Section: Biological Sciences
The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis [link]Paper   doi   link   bibtex   abstract  
  1999 (1)
Increased auxin efflux in the IAA-overproducing sur1 mutant of Arabidopsis thaliana: A mechanism of reducing auxin levels?. Delarue, M., Muller, P., Bellini, C., & Delbarre, A. Physiologia Plantarum, 107(1): 120–127. 1999. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.1999.100116.x
Increased auxin efflux in the IAA-overproducing sur1 mutant of Arabidopsis thaliana: A mechanism of reducing auxin levels? [link]Paper   doi   link   bibtex   abstract