{tab=Research} Ove Nilsson with aspen trees at the tree phenotyping platformPhoto: Fredrik Larsson

The research in my group is focused on understanding the regulation of flowering time and tree phenology, with a special interest in comparative biology studies of the genetic pathways that are conserved in controlling the two processes. With this approach we aim to contribute to our understanding of the evolution of annual vs. perennial life strategies.

My group has a special interest in the regulation and function of FT-like genes. We contributed to the first studies of the molecular mechanisms controlling flowering time in trees, showing that FT-like genes, that are central in the regulation of flowering time in annual plants, are functionally conserved in being very potent activators of flowering in trees.

Surprisingly, we could also show that FT-like genes in poplar trees control another important aspect of perennial growth behaviour: the short day-induced growth cessation and bud set that occurs in the fall. We have shown that the activity of the CO/FT regulon is partly conserved in the aspen tree and that short days induce a down-regulation of the activity of this regulon, leading to growth cessation and bud set. These findings have led to a completely new way of looking at the function of FT-like genes.

Four Poplars in four seasons

Subsequent studies in many different annual plants have now shown that these genes have a much more general role in controlling photoperiodic regulation of plant growth and development than was previously anticipated, based on work in Arabidopsis. We could also show that in sugar beet, only a two amino acid difference is critical in determining the sub-functionalization of two FT paralogs into either activators or repressors of flowering, and that the flowering repressor BvFT1 has a central role in the regulation of the biennial growth strategy in sugar beet.

Folding prediction of BvFT1 and BvFT2. The structures are shown as solid three-dimensional traces with an alignment diversity color setting. Down-regulation of BvFT2 by RNAi of BvFT1 result in bolting repression in sugar beet. 400-day old BvFT2 RNAi annual plant grown under long-day conditions.

We are now extending our comparative biology approach to study the similarities and differences in the regulation of flowering in Arabidopsis and the regulation of flowering and phenology in aspen (poplar) trees. Aspen trees have also two sub-functionalized FT-like genes, and we want to understand how these genes contribute to the regulation of growth cessation and bud set in the fall, as well as to the regulation of bud flush and growth in the spring.

Transgenic hybrid aspen tree forming inflorescences and flowers after 6 months instead of after 10-15 years. Bud burst on an aspen branch - The Nilsson group is studying the genes controlling growth cessation, bud set and bud burst in trees

We have also been involved in work showing that polymorphisms within one of the FT-like genes is the most important association that can be found to natural variation in adaptation to growth at different latitudes in Swedish aspen trees. We are investigating the mechanism for this adaptation in detail by studying the role of upstream regulators in the regulation of FT transcription in trees. We have also a long standing interest in extending this work to gymnosperm trees, like Norway spruce. Here, I have been involved in leading several large projects determining the genome sequences and developing genomic resources of conifers, including the first sequence of a gymnosperm, Norway spruce.

This work will provide us with a better understanding of the genetic pathways responsible for photoperiodic regulation of plant growth and development. It will also allow us to design new ways to enhance the speed of tree breeding through accelerated flowering and to adapt the growing period of trees to new climate zones and to a changing climate.


Key publications

  • André, D., Marcon, A., Lee, K. C., Goretti, D., Zhang, B., Delhomme, N., Schmid, M., and Nilsson, O. (2022). FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32: 2988-2996. https://doi.org/10.1016/j.cub.2022.05.023
  • Ding, J., Zhang, B., Li, Y., André, D. and Nilsson, O. (2021). Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. New Phytologist 232: 2339-52. https://doi.org/10.1111/nph.17350
  • Ding, J., Böhlenius, H., Rühl, M., Chen, P., Sane, S., Zambrano, J., Zheng, B., Eriksson, M. and Nilsson, O. (2018). GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytologist 218: 1491-1503. https://doi.org/10.1111/nph.15087
  • Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bakó, L., Fankhauser, C. and Nilsson, O. (2017). BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR4 abundance. eLife 6:e26759. https://doi.org/10.7554/elife.26759
  • Nystedt B., Street N. et al. (2013). The Norway spruce genome sequence gives insights into conifer genome evolution. Nature 497: 579-584. (Nilsson O. Corresponding author). https://doi.org/10.1038/nature12211
  • Pin P.A., Benlloch R., Bonnet D., Wremert-Weich E., Kraft T., Gielen J.L., Nilsson O. (2010). An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330: 1397-1400. https://doi.org/10.1126/science.1197004
  • Tuskan, G.A. et al. (The Populus Genome Consortium). 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw). Science 13: 1596-1604. https://doi.org/10.1126/science.1128691
  • Eriksson, S., Böhlenius, H., Moritz, T., Nilsson, O. 2006. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18: 2172-2181. https://doi.org/10.1105/tpc.106.042317
  • Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, S.H., Nilsson, O. 2006. The conserved CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312: 1040-1043 https://doi.org/10.1126/science.1126038
  • Norberg, M., Holmlund, M., Nilsson, O. 2005. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132: 2203-2201. https://doi.org/10.1242/dev.01815
  • Parcy, F., Nilsson, O., Busch, M. A., Lee, I. & Weigel, D. (1998). A genetic framework for floral patterning. Nature 395, 561-566. https://doi.org/10.1038/26903
  • Weigel, D. & Nilsson, O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495-500. https://doi.org/10.1038/377495a0
{tab=Team}
  • Personnel Image
    García Romañach, Laura
    PhD Student
    E-mail
    Room: B5-20-45
  • Personnel Image
    Lee, Keh Chien
    Staff scientist
    E-mail
    Room: B6-40-45
  • Personnel Image
    Marcon, Alice
    PhD Student
    E-mail
    Room: B5-16-45
  • Personnel Image
    Nilsson, Ove
    Professor
    E-mail
    Room: B5-38-45
    Website
  • Personnel Image
    Zhang, Bo
    Staff scientist
    E-mail
    Room: C4-29-40

{tab=CV O. Nilsson}

Education and academic degrees

  • 1999: Docent, SLU, Umeå, Sweden
  • 1995: PhD, SLU, Umeå, Sweden
  • 1988: M.Sc, Umeå University, Sweden
  • 1987: B.Sc, Gothenburg University, Sweden

Employments

  • Since 2002: Professor, SLU, Umeå, Sweden
  • 1997-2002: Assistant professor (forskarassistent), SLU, Umeå, Sweden
  • 1995-1997: Postdoctoral fellow, the Salk Institute for Biological Studies, USA.
  • 1998-1995: PhD student, SLU, Umeå, Sweden

Commissions of trust

  • Since 2022: Elected member of the Formas research council (Forskarråd), the board of the government research council for sustainable development
  • 2021: Evaluator of Spanish research centres in natural sciences “Severo Ochoa/Maria de Maeztu. Spanish ministry for science and innovation.
  • 2020: Member of the chemistry evaluation panel during the large evaluation of research at Lund University (RQ20).
  • 2019-2024: Leader and main applicant for the KAW-funded project: Norway Spruce and Scots Pine Genome Sequencing, Re-Sequencing and Genomic Selection”.
  • Since 2018: Member of the board of the Wallenberg Wood Science Centre
  • Since 2018: Member of the board of the Marcus Wallenberg Prize.
  • 2017-2021: Leader and main applicant for the KAW-funded project: “UPSC Center for Forest Biology and Biotechnology”. Budget: 48 MSEK.
  • 2017-2021: Director and main applicant of the VINNOVA-funded UPSC Centre for Forest Biotechnology (Competence centre).
  • 2016, 2018: Chair of the external evaluation panel for the evaluation of the Copenhagen Plant Science Centre.
  • Since 2016: Member of the board of the Troedsson foundation.
  • Since 2016: Member of the Scientific Advisory Board for the Portuguese PhD program “Plants for Life”.
  • Since 2016: Member of the Advisory Board for LUKE (National Resources Institute of Finland).
  • Since 2015: Member of the board of the Faculty of Forest Sciences, SLU
  • Since 2015: Member of the Scientific Advisory Board for the Viiki Plant Science Centre at Helsinki University.
  • Since 2014: Member of the Scientific Advisory Board for the Centre of Excellence “Molecular Biology of Primary Producers” at the Helsinki and Turku Universities.
  • Since 2012: Member of the Scientific Advisory Board for the LabEx “Saclay Plant Sciences”. A large initiative to coordinate research, training and innovation between the four strongest plant research units in the Paris area (IBP, Orsay;, ISV, Gif-sur Yvette; URGV, Evry and IJPB, Versailles).
  • Since 2012: Director, Umeå Plant Science Centre
  • Since 2011: Board of directors of the Centre for Environmental and Resource Economics (CERE).

Prizes, Awards, Honours

  • 2019: Elected into the Royal Swedish Academy of Agriculture and Forestry.
  • 2017: Elected into the Swedish Royal Academy of Sciences.
  • 2016: Elected member of the European Molecular Biology Organization (EMBO).
  • 2012: Wallenberg Scholar.
  • 2007: The Marcus Wallenberg Prize.
  • 2001: Individual Grant for the Advancement of Research Leaders (INGVAR) from the Swedish Foundation for Strategic Research (SSF). Appointed as “Research leader of the future in academia and industry”.
{tab=Publications}
  2024 (1)
Whole-genome resequencing facilitates the development of a 50K single nucleotide polymorphism genotyping array for Scots pine (Pinus sylvestris L.) and its transferability to other pine species. Estravis Barcala, M., van der Valk, T., Chen, Z., Funda, T., Chaudhary, R., Klingberg, A., Fundova, I., Suontama, M., Hallingbäck, H., Bernhardsson, C., Nystedt, B., Ingvarsson, P. K., Sherwood, E., Street, N., Gyllensten, U., Nilsson, O., & Wu, H. X. The Plant Journal, 117(3): 944–955. 2024. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.16535
Whole-genome resequencing facilitates the development of a 50K single nucleotide polymorphism genotyping array for Scots pine (Pinus sylvestris L.) and its transferability to other pine species [link]Paper   doi   link   bibtex   abstract  
  2023 (2)
Age-dependent seasonal growth cessation in Populus. Liao, X., Su, Y., Klintenäs, M., Li, Y., Sane, S., Wu, Z., Chen, Q., Zhang, B., Nilsson, O., & Ding, J. Proceedings of the National Academy of Sciences, 120(48): e2311226120. November 2023. Publisher: Proceedings of the National Academy of Sciences
Age-dependent seasonal growth cessation in Populus [link]Paper   doi   link   bibtex   abstract  
Threatened forests. Wu, H., & Nilsson, O. EMBO reports, 24(5): e57106. May 2023. Publisher: John Wiley & Sons, Ltd
Threatened forests [link]Paper   doi   link   bibtex   abstract  
  2022 (5)
Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. Akhter, S., Westrin, K. J., Zivi, N., Nordal, V., Kretzschmar, W. W., Delhomme, N., Street, N. R., Nilsson, O., Emanuelsson, O., & Sundström, J. F. New Phytologist, 236(5): 1951–1963. December 2022.
Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway [link]Paper   doi   link   bibtex   abstract  
FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. André, D., Marcon, A., Lee, K. C., Goretti, D., Zhang, B., Delhomme, N., Schmid, M., & Nilsson, O. Current Biology, 32(13): 2988–2996.e4. July 2022. Publisher: Elsevier
FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees [link]Paper   doi   link   bibtex   abstract  
Identification of growth regulators using cross-species network analysis in plants. Curci, P. L., Zhang, J., Mähler, N., Seyfferth, C., Mannapperuma, C., Diels, T., Van Hautegem, T., Jonsen, D., Street, N., Hvidsten, T. R, Hertzberg, M., Nilsson, O., Inzé, D., Nelissen, H., & Vandepoele, K. Plant Physiology, 190(4): 2350–2365. December 2022.
Identification of growth regulators using cross-species network analysis in plants [link]Paper   doi   link   bibtex   abstract  
Populus SVL Acts in Leaves to Modulate the Timing of Growth Cessation and Bud Set. André, D., Zambrano, J. A., Zhang, B., Lee, K. C., Rühl, M., Marcon, A., & Nilsson, O. Frontiers in Plant Science, 13. February 2022.
Populus SVL Acts in Leaves to Modulate the Timing of Growth Cessation and Bud Set [link]Paper   doi   link   bibtex   abstract  
Winter dormancy in trees. Nilsson, O. Current Biology, 32(12): R630–R634. June 2022.
Winter dormancy in trees [link]Paper   doi   link   bibtex   abstract  
  2021 (3)
GIGANTEA influences leaf senescence in trees in two different ways. Fataftah, N., Bag, P., André, D., Lihavainen, J., Zhang, B., Ingvarsson, P. K, Nilsson, O., & Jansson, S. Plant Physiology, 187(4): 2435–2450. September 2021.
GIGANTEA influences leaf senescence in trees in two different ways [link]Paper   doi   link   bibtex   abstract   8 downloads  
Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. Ding, J., Zhang, B., Li, Y., André, D., & Nilsson, O. New Phytologist, 232(6): 2339–2352. March 2021.
Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees [link]Paper   doi   link   bibtex   abstract   12 downloads  
Variation in non-target traits in genetically modified hybrid aspens does not exceed natural variation. Robinson, K. M., Möller, L., Bhalerao, R. P., Hertzberg, M., Nilsson, O., & Jansson, S. New Biotechnology, 64: 27–36. September 2021.
Variation in non-target traits in genetically modified hybrid aspens does not exceed natural variation [link]Paper   doi   link   bibtex   abstract   11 downloads  
  2020 (1)
Peptide encoding Populus CLV3/ESR‐RELATED 47 ( PttCLE47 ) promotes cambial development and secondary xylem formation in hybrid aspen. Kucukoglu, M., Chaabouni, S., Zheng, B., Mähönen, A. P., Helariutta, Y., & Nilsson, O. New Phytologist, 226(1): 75–85. April 2020.
Peptide encoding <i>Populus CLV3/ESR‐RELATED 47</i> ( <i>PttCLE47</i> ) promotes cambial development and secondary xylem formation in hybrid aspen [link]Paper   doi   link   bibtex   1 download  
  2019 (1)
Certification for gene-edited forests. Strauss, S. H., Boerjan, W., Chiang, V., Costanza, A., Coleman, H., Davis, J. M., Lu, M., Mansfield, S. D., Merkle, S., Myburg, A., Nilsson, O., Pilate, G., Powell, W., Seguin, A., & Valenzuela, S. Science, 365(6455): 767–768. August 2019. Publisher: American Association for the Advancement of Science Section: Letters
Certification for gene-edited forests [link]Paper   doi   link   bibtex   abstract   2 downloads  
  2018 (7)
A major locus controls local adaptation and adaptive life history variation in a perennial plant. Wang, J., Ding, J., Tan, B., Robinson, K. M., Michelson, I. H., Johansson, A., Nystedt, B., Scofield, D. G., Nilsson, O., Jansson, S., Street, N. R., & Ingvarsson, P. K. Genome Biology, 19(1): 72. December 2018.
A major locus controls local adaptation and adaptive life history variation in a perennial plant [link]Paper   doi   link   bibtex   4 downloads  
Autumn senescence in aspen is not triggered by day length. Michelson, I. H., Ingvarsson, P. K., Robinson, K. M., Edlund, E., Eriksson, M. E., Nilsson, O., & Jansson, S. Physiologia Plantarum, 162(1): 123–134. January 2018.
Autumn senescence in aspen is not triggered by day length [link]Paper   doi   link   bibtex   5 downloads  
GIGANTEA-like genes control seasonal growth cessation in Populus. Ding, J., Böhlenius, H., Rühl, M. G., Chen, P., Sane, S., Zambrano, J. A., Zheng, B., Eriksson, M. E., & Nilsson, O. New Phytologist, 218(4): 1491–1503. 2018. _eprint: https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.15087
GIGANTEA-like genes control seasonal growth cessation in Populus [link]Paper   doi   link   bibtex   abstract   7 downloads  
Integrative Analysis of Three RNA Sequencing Methods Identifies Mutually Exclusive Exons of MADS-Box Isoforms During Early Bud Development in Picea abies. Akhter, S., Kretzschmar, W. W., Nordal, V., Delhomme, N., Street, N. R., Nilsson, O., Emanuelsson, O., & Sundström, J. F. Frontiers in Plant Science, 9: 1625. November 2018.
Integrative Analysis of Three RNA Sequencing Methods Identifies Mutually Exclusive Exons of MADS-Box Isoforms During Early Bud Development in Picea abies [link]Paper   doi   link   bibtex  
LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. Chahtane, H., Zhang, B., Norberg, M., LeMasson, M., Thévenon, E., Bakó, L., Benlloch, R., Holmlund, M., Parcy, F., Nilsson, O., & Vachon, G. New Phytologist, 220(2): 579–592. October 2018.
LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis [link]Paper   doi   link   bibtex   1 download  
Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. Jokipii-Lukkari, S., Delhomme, N., Schiffthaler, B., Mannapperuma, C., Prestele, J., Nilsson, O., Street, N. R., & Tuominen, H. Plant Physiology, 176(4): 2851–2870. April 2018.
Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce [link]Paper   doi   link   bibtex   2 downloads  
Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. Reza, S. H., Delhomme, N., Street, N. R., Ramachandran, P., Dalman, K., Nilsson, O., Minina, E. A., & Bozhkov, P. V. PLOS ONE, 13(3): e0192945. March 2018.
Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death [link]Paper   doi   link   bibtex  
  2017 (5)
AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., Kumar, V., Mannapperuma, C., Delhomme, N., Nilsson, O., Tuominen, H., Pesquet, E., Fischer, U., Niittylä, T., Sundberg, B., & Hvidsten, T. R. The Plant Cell, 29(7): 1585–1604. July 2017.
AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula [link]Paper   doi   link   bibtex  
BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bakó, L., Fankhauser, C., & Nilsson, O. eLife, 6: e26759. August 2017.
BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance [link]Paper   doi   link   bibtex   abstract  
Functional metabolomics as a tool to analyze Mediator function and structure in plants. Davoine, C., Abreu, I. N., Khajeh, K., Blomberg, J., Kidd, B. N., Kazan, K., Schenk, P. M., Gerber, L., Nilsson, O., Moritz, T., & Björklund, S. PLOS ONE, 12(6): e0179640. June 2017.
Functional metabolomics as a tool to analyze Mediator function and structure in plants [link]Paper   doi   link   bibtex  
NorWood: a gene expression resource for evo‐devo studies of conifer wood development. Jokipii‐Lukkari, S., Sundell, D., Nilsson, O., Hvidsten, T. R., Street, N. R., & Tuominen, H. New Phytologist, 216(2): 482–494. October 2017.
NorWood: a gene expression resource for evo‐devo studies of conifer wood development [link]Paper   doi   link   bibtex  
WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. Kucukoglu, M., Nilsson, J., Zheng, B., Chaabouni, S., & Nilsson, O. New Phytologist, 215(2): 642–657. 2017. _eprint: https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.14631
WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees [link]Paper   doi   link   bibtex   abstract  
  2016 (4)
EU Regulations Impede Market Introduction of GM Forest Trees. Custers, R., Bartsch, D., Fladung, M., Nilsson, O., Pilate, G., Sweet, J., & Boerjan, W. Trends in Plant Science, 21(4): 283–285. April 2016.
EU Regulations Impede Market Introduction of GM Forest Trees [link]Paper   doi   link   bibtex  
FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Klocko, A. L., Ma, C., Robertson, S., Esfandiari, E., Nilsson, O., & Strauss, S. H. Plant Biotechnology Journal, 14(2): 808–819. 2016. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/pbi.12431
FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus [link]Paper   doi   link   bibtex   abstract   1 download  
Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar ( Populus tremula L.). Hoenicka, H., Lehnhardt, D., Briones, V., Nilsson, O., & Fladung, M. Tree Physiology, 36(5): 667–677. May 2016.
Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar ( <i>Populus tremula</i> L.) [link]Paper   doi   link   bibtex   3 downloads  
Molecular regulation of phenology in trees — because the seasons they are a-changin’. Ding, J., & Nilsson, O. Current Opinion in Plant Biology, 29: 73–79. February 2016.
Molecular regulation of phenology in trees — because the seasons they are a-changin’ [link]Paper   doi   link   bibtex  
  2015 (2)
CLE peptide signaling in plants - the power of moving around. Kucukoglu, M., & Nilsson, O. Physiol Plant, 155(1): 74–87. September 2015. Edition: 2015/06/23
CLE peptide signaling in plants - the power of moving around [link]Paper   doi   link   bibtex   abstract  
Electronic plants. Stavrinidou, E., Gabrielsson, R., Gomez, E., Crispin, X., Nilsson, O., Simon, D. T., & Berggren, M. Science Advances, 1(10): e1501136. November 2015.
Electronic plants [link]Paper   doi   link   bibtex   abstract  
  2014 (3)
Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Liebsch, D., Sunaryo, W., Holmlund, M., Norberg, M., Zhang, J., Hall, H. C., Helizon, H., Jin, X., Helariutta, Y., Nilsson, O., Polle, A., & Fischer, U. Development, 141(22): 4311–4319. November 2014.
Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the <i>Arabidopsis</i> hypocotyl [link]Paper   doi   link   bibtex   abstract  
Insights into Conifer Giga-Genomes. De La Torre, A. R., Birol, I., Bousquet, J., Ingvarsson, P. K., Jansson, S., Jones, S. J., Keeling, C. I., MacKay, J., Nilsson, O., Ritland, K., Street, N., Yanchuk, A., Zerbe, P., & Bohlmann, J. Plant Physiology, 166(4): 1724–1732. December 2014.
Insights into Conifer Giga-Genomes [link]Paper   doi   link   bibtex  
Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Hoenicka, H., Lehnhardt, D., Nilsson, O., Hanelt, D., & Fladung, M. Plant Biotechnology Journal, 12(8): 1066–1074. October 2014.
Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring [link]Paper   doi   link   bibtex  
  2013 (2)
The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. Wang, J., Kucukoglu, M., Zhang, L., Chen, P., Decker, D., Nilsson, O., Jones, B., Sandberg, G., & Zheng, B. BMC Plant Biology, 13(1): 94. 2013.
The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway [link]Paper   doi   link   bibtex  
The Norway spruce genome sequence and conifer genome evolution. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, Å., Rilakovic, N., Ritland, C., Rosselló, J. A., Sena, J., Svensson, T., Talavera-López, C., Theißen, G., Tuominen, H., Vanneste, K., Wu, Z., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R. P., Bohlmann, J., Bousquet, J., Garcia Gil, R., Hvidsten, T. R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Lee Thompson, S., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P. K., Lundeberg, J., & Jansson, S. Nature, 497(7451): 579–584. May 2013.
The Norway spruce genome sequence and conifer genome evolution [link]Paper   doi   link   bibtex   1 download  
  2012 (4)
Analysis of conifer FLOWERING LOCUS T / TERMINAL FLOWER1 ‐like genes provides evidence for dramatic biochemical evolution in the angiosperm \textlessspan style="font-variant:small-caps;"\textgreater FT \textless/span\textgreater lineage. Klintenäs, M., Pin, P. A., Benlloch, R., Ingvarsson, P. K., & Nilsson, O. New Phytologist, 196(4): 1260–1273. December 2012.
Analysis of conifer <i>FLOWERING LOCUS T</i> / <i>TERMINAL FLOWER1</i> ‐like genes provides evidence for dramatic biochemical evolution in the angiosperm \textlessspan style="font-variant:small-caps;"\textgreater <i>FT</i> \textless/span\textgreater lineage [link]Paper   doi   link   bibtex  
Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1 , -2 , and -3 Are the Dominant Paralogs. Plackett, A. R., Powers, S. J., Fernandez-Garcia, N., Urbanova, T., Takebayashi, Y., Seo, M., Jikumaru, Y., Benlloch, R., Nilsson, O., Ruiz-Rivero, O., Phillips, A. L., Wilson, Z. A., Thomas, S. G., & Hedden, P. The Plant Cell, 24(3): 941–960. March 2012.
Analysis of the Developmental Roles of the Arabidopsis Gibberellin 20-Oxidases Demonstrates That GA20ox1 , -2 , and -3 Are the Dominant Paralogs [link]Paper   doi   link   bibtex  
The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet. Pin, P., Zhang, W., Vogt, S., Dally, N., Büttner, B., Schulze-Buxloh, G., Jelly, N., Chia, T., Mutasa-Göttgens, E., Dohm, J., Himmelbauer, H., Weisshaar, B., Kraus, J., Gielen, J., Lommel, M., Weyens, G., Wahl, B., Schechert, A., Nilsson, O., Jung, C., Kraft, T., & Müller, A. Current Biology, 22(12): 1095–1101. June 2012.
The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet [link]Paper   doi   link   bibtex  
The multifaceted roles of FLOWERING LOCUS T in plant development: FT, a multifunctional protein. Pin, P. A., & Nilsson, O. Plant, Cell & Environment, 35(10): 1742–1755. October 2012.
The multifaceted roles of FLOWERING LOCUS T in plant development: FT, a multifunctional protein [link]Paper   doi   link   bibtex  
  2011 (1)
The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Elfving, N., Davoine, C., Benlloch, R., Blomberg, J., Brännström, K., Müller, D., Nilsson, A., Ulfstedt, M., Ronne, H., Wingsle, G., Nilsson, O., & Björklund, S. Proceedings of the National Academy of Sciences, 108(20): 8245–8250. May 2011. Publisher: National Academy of Sciences Section: Biological Sciences
The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development [link]Paper   doi   link   bibtex   abstract  
  2010 (1)
An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet. Pin, P. A., Benlloch, R., Bonnet, D., Wremerth-Weich, E., Kraft, T., Gielen, J. J. L., & Nilsson, O. Science, 330(6009): 1397–1400. December 2010.
An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet [link]Paper   doi   link   bibtex   abstract  
  2009 (1)
Plant Evolution: Measuring the Length of the Day. Nilsson, O. Current Biology, 19(7): R302–R303. April 2009.
Plant Evolution: Measuring the Length of the Day [link]Paper   doi   link   bibtex  
  2008 (1)
Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. Rieu, I., Eriksson, S., Powers, S. J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S. G., Hedden, P., & Phillips, A. L. The Plant Cell, 20(9): 2420–2436. October 2008.
Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in <i>Arabidopsis</i> [link]Paper   doi   link   bibtex   abstract  
  2007 (1)
The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle: GA20ox function in Arabidopsis. Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., Linhartova, T., Eriksson, S., Nilsson, O., Thomas, S. G., Phillips, A. L., & Hedden, P. The Plant Journal, 53(3): 488–504. October 2007.
The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle: GA20ox function in Arabidopsis [link]Paper   doi   link   bibtex  
  2006 (2)
CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Bohlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A. M., Jansson, S., Strauss, S. H., & Nilsson, O. Science, 312(5776): 1040–1043. May 2006. Place: Washington Publisher: Amer Assoc Advancement Science WOS:000237628800042
doi   link   bibtex   abstract   2 downloads  
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. P., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., dePamphilis , C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van de Peer, Y., & Rokhsar, D. Science, 313(5793): 1596–1604. September 2006. Place: Washington Publisher: Amer Assoc Advancement Science WOS:000240498900035
doi   link   bibtex   abstract  
  2005 (2)
The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Norberg, M., Holmlund, M., & Nilsson, O. Development, 132(9): 2203–2213. May 2005.
The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs [link]Paper   doi   link   bibtex   abstract  
The mRNA of the Arabidopsis Gene FT Moves from Leaf to Shoot Apex and Induces Flowering. Huang, T., Böhlenius, H., Eriksson, S., Parcy, F., & Nilsson, O. Science, 309(5741): 1694–1696. September 2005. Publisher: American Association for the Advancement of Science Section: Research Article
The mRNA of the Arabidopsis Gene FT Moves from Leaf to Shoot Apex and Induces Flowering [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2004 (3)
A Populus EST resource for plant functional genomics. Sterky, F., Bhalerao, R. R., Unneberg, P., Segerman, B., Nilsson, P., Brunner, A. M., Charbonnel-Campaa, L., Lindvall, J. J., Tandre, K., Strauss, S. H., Sundberg, B., Gustafsson, P., Uhlén, M., Bhalerao, R. P., Nilsson, O., Sandberg, G., Karlsson, J., Lundeberg, J., & Jansson, S. Proceedings of the National Academy of Sciences, 101(38): 13951–13956. September 2004. Publisher: National Academy of Sciences Section: Biological Sciences
A Populus EST resource for plant functional genomics [link]Paper   doi   link   bibtex   abstract  
A transcriptional timetable of autumn senescence. Andersson, A., Keskitalo, J., Sjodin, A., Bhalerao, R. P., Sterky, F., Wissel, K., Tandre, K., Aspeborg, H., Moyle, R., Ohmiya, Y., Bhalerao, R., Brunner, A., Gustafsson, P., Karlsson, J., Lundeberg, J., Nilsson, O., Sandberg, G., Strauss, S., Sundberg, B., Uhlen, M., Jansson, S., & Nilsson, P. Genome Biology, 5(4): R24. 2004. Place: London Publisher: Bmc WOS:000220584700010
doi   link   bibtex   abstract  
Revisiting tree maturation and floral initiation in the poplar functional genomics era. Brunner, A. M., & Nilsson, O. New Phytologist, 164(1): 43–51. October 2004. Place: Hoboken Publisher: Wiley WOS:000223662000006
doi   link   bibtex   abstract  
  2003 (1)
Out of the woods: forest biotechnology enters the genomic era. Bhalerao, R., Nilsson, O., & Sandberg, G. Current Opinion in Biotechnology, 14(2): 206–213. April 2003.
Out of the woods: forest biotechnology enters the genomic era [link]Paper   doi   link   bibtex   abstract