{tab=Research}Åsa Strand sitting on her desk in her office at Umeå Plant Science CentrePhoto: Mattias Pettersson

The overall goal of the research in my group is to understand the regulation and control of cellular energy metabolism. A tight choreography of the nuclear and organellar genomes within the eukaryotic cell is essential for the establishment of cellular energy metabolism during development and for acclimation to changing demands on cellular metabolism when growth conditions are changing. Our projects endeavour to identify the intracellular signalling mechanisms that coordinate the dynamic interaction between the different genomes during major cellular metabolic transitions.

Mitochondria and chloroplasts are the powerhouses of the cell and exposure to stress inhibits metabolic activities leading to severe constraints on cellular energy homeostasis. Failure to restore either respiration or photosynthesis severely affects vigour, and possibly survival, of the organism. Communication between the organelles and the nucleus, so called retrograde signalling networks, are essential for the recovery of energy metabolism following stress but also for the establishment of cellular energy metabolism. Mutants where this communication is impaired have dysfunctional organelles and severely impaired cellular energy metabolism. For plants this can have fatal consequences, and in humans dysfunctional mitochondria-to-nucleus signalling has been linked to the aging process and to several severe diseases.

To address the regulatory mechanisms that control the dynamic interaction between the different genomes we take an integrative approach using a combination of genetics, molecular biology, biochemistry, cell biology and biological modelling. We also combine several model systems including Arabidopsis plants and an Arabidopsis cell line, as well as conifers such as spruce and pine. Our work is divided into two large lines of research composed of several sub-projects.

Chloroplast development and establishment of photosynthetic activity

In this project the focus is on the signalling network controlling the development of functional chloroplasts and the establishment of photosynthetic activity. This developmental process drives a cellular metabolic shift in the cell from requiring external energy sources for growth and development to becoming a supplier of energy to support growth of new developing tissues. This transition in cellular metabolic activity requires a complex regulatory network involving several cellular compartments, extensive chromatin reorganisation and massive transcriptional changes. Several sub-projects address the different aspects of this process.

Illustration depicting signalling components that are involved in chloroplast development and establishment of photosynthetic activityFigure 1. Overview of the signalling components controlling the development of functional chloroplasts and the establishment of photosynthesis in Arabidopsis (Hernández-Verdeja et al., Physiol Plant. 2020).

Integration of energy and retrograde signalling pathways during plant stress responses

Within this project we investigate the integration of energy and retrograde signalling pathways during plant stress responses. We have identified CDKE1 as a central component receiving stress induced retrograde signals for both chloroplasts and mitochondria. Furthermore, CDKE1 regulates the redistribution of energy and metabolism towards either growth or stress response. Given the position of CDKE1 in the Mediator complex, this kinase could act as a sensitive relay between organellar retrograde signals and their cognate promoter-bound, stress-induced TFs and RNA polymerase II (RNAP II), regulating the expression of appropriate genes in response to stress conditions. Several sub-projects address the interaction partners of CDKE1 and the targets for its kinase activity.

Illustration depicting the interplay between energy and retrograde signalling pathways during stress responses in plantsFigure 2. Integration of retrograde signalling and energy related pathways by CDKE1 and the Mediator complex (Crawford et al., J Exp Bot. 2017). {tab=Team}
  • Personnel Image
    Brun, Alexis Antoine Mario
    PostDoc, Representativ
    E-mail
    Room: B4-20-45
  • Personnel Image
    Jin, Xu
    Staff scientist
    E-mail
    Room: C4-29-40
  • Personnel Image
    Ramirez, Leonor
    PostDoc
    E-mail
    Room: C4-29-40
  • Personnel Image
    Sterling, Luis
    Project Student
    E-mail
    Room:
  • Personnel Image
    Strand, Åsa
    Professor
    E-mail
    Room: B4-44-45
    Website
  • Personnel Image
    Vergara Robles, Alexander
    PostDoc
    E-mail
    Room:

Group picture of the members of Åsa Strand's group standing in a lab at the Umeå Plant Science CentreÅsa Strand and her group members (status March 2022; photo: Mattias Pettersson)


Former group members:

Postdocs
Anasoya Mohaptra, Tatjana Kleine, Elisabeth Ankele, Aurora Piñas-Fernández, Jehad Shaikhali, Juande Barajas-López, Mats-Jerry Eriksson, Carole Dubreuil, Manuel Guinea Díaz, Sonali Ranade, Sofie Grönlund, Nico Blanco, Tim Crawford, Qi Yang, Nora Lehotai, Jannek Hauser, Tamara Hernández-Verdeja, Carmen Hermida-Carrera

PhD students
Peter Kindgren, Louise Norén, Jimmy Kremnev, Yan Ji

{tab=CV Å. Strand}
  • 2019: Physiologia Plantarum Prize for outstanding contribution to plant sciences
  • 2013: Professor, Plant Cell and Molecular Biology, Umeå University
  • 2012: Chairman of the UPSC board
  • 2008: Research Fellow at The Royal Swedish Academy of Sciences
  • 2008: Associate Professor/Docent, Umeå University
  • 2007: Award for young scientists, Umeå University
  • 2004: FESPB young investigator award
  • 2004: FFL2, Young investigator award, Foundation for Strategic Research (SSF)
  • 2003: Assistant Professor funded by the Swedish Research Council (VR)
  • 2000-2002: EMBO Postdoctoral fellow, Salk Institute for Biological Studies, Howard Hughes Medical Institute and Plant Biology Laboratory La Jolla, USA
  • 2000: PhD, Plant Molecular Biology, Umeå University
  • 1995: MSc, Molecular Biology, Umeå University

{tab=Grants}

Major grants

  • ARC19-0051, 2020-2025, Redesigning photosynthesis for future food security
    SSF Agenda 2030 Research Centers (ARC), Foundation for Strategic Research (SSF)
    SEK: 50 000 000 (main applicant)
  • SB16-0089, 2017-2022, Decoding signalling networks controlling plant stress responses
    Systems Biology call, Foundation for Strategic Research (SSF)
    SEK: 35 000 000 (main applicant)
  • 2016-2021, Mediator and evolutionary conserved mechanisms
    The Knut and Alice Wallenberg foundation (KAW)
    SEK: 39 700 000 (co-applicant)
  • 2020-03958, 2021-2024, Establishment of photosynthesis, a tale of two genomes
    Research Grants Open call 2020 Swedish Research Council (VR)
    SEK: 4 200 000 (main applicant)
{tab=Publications}
  2024 (1)
Pseudomonas syringae infectivity correlates to altered transcript and metabolite levels of Arabidopsis mediator mutants. Blomberg, J., Tasselius, V., Vergara, A., Karamat, F., Imran, Q. M., Strand, Å., Rosvall, M., & Björklund, S. Scientific Reports, 14(1): 6771. March 2024. Publisher: Nature Publishing Group
Pseudomonas syringae infectivity correlates to altered transcript and metabolite levels of Arabidopsis mediator mutants [link]Paper   doi   link   bibtex   abstract  
  2023 (2)
An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. Norén Lindbäck, L., Ji, Y., Cervela-Cardona, L., Jin, X., Pedmale, U. V., & Strand, Å. New Phytologist, 240(3): 1082–1096. 2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/nph.19219
An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants’ CO2 Uptake. Routier, C., Vallan, L., Daguerre, Y., Juvany, M., Istif, E., Mantione, D., Brochon, C., Hadziioannou, G., Strand, Å., Näsholm, T., Cloutet, E., Pavlopoulou, E., & Stavrinidou, E. ACS Nano, 17(4): 3430–3441. February 2023. Publisher: American Chemical Society
Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants’ CO2 Uptake [link]Paper   doi   link   bibtex   abstract  
  2022 (1)
GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. Hernández-Verdeja, T., Vuorijoki, L., Jin, X., Vergara, A., Dubreuil, C., & Strand, Å. New Phytologist, 235(1): 188–203. 2022.
GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
  2021 (2)
A fully assembled plastid‐encoded \textlessspan style="font-variant:small-caps;"\textgreaterRNA\textless/span\textgreater polymerase complex detected in etioplasts and proplastids in Arabidopsis. Ji, Y., Lehotai, N., Zan, Y., Dubreuil, C., Díaz, M. G., & Strand, Å. Physiologia Plantarum, 171(3): 435–446. March 2021.
A fully assembled plastid‐encoded \textlessspan style="font-variant:small-caps;"\textgreaterRNA\textless/span\textgreater polymerase complex detected in etioplasts and proplastids in Arabidopsis [link]Paper   doi   link   bibtex   4 downloads  
How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. Calderon, R. H., & Strand, Å. Current Opinion in Plant Biology, 63: 102093. October 2021.
How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes [link]Paper   doi   link   bibtex   abstract   27 downloads  
  2020 (3)
Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis. Hernández‐Verdeja, T., Vuorijoki, L., & Strand, Å. Physiologia Plantarum, 169(3): 397–406. July 2020.
Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis [link]Paper   doi   link   bibtex   7 downloads  
Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress. Crawford, T., Karamat, F., Lehotai, N., Rentoft, M., Blomberg, J., Strand, Å., & Björklund, S. Scientific Reports, 10(1): 5073. December 2020.
Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress [link]Paper   doi   link   bibtex   abstract   5 downloads  
Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Yang, Q., Blanco, N. E., Hermida-Carrera, C., Lehotai, N., Hurry, V., & Strand, Å. Nature Communications, 11(1): 128. December 2020.
Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2019 (1)
Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. Blanco, N. E, Liebsch, D., Guinea Díaz, M., Strand, Å., & Whelan, J. Journal of Experimental Botany, 70(8): 2325–2338. April 2019.
Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1 [link]Paper   doi   link   bibtex   4 downloads  
  2018 (4)
Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases. Dubreuil, C., Jin, X., Barajas-López, J. d. D., Hewitt, T. C., Tanz, S. K., Dobrenel, T., Schröder, W. P., Hanson, J., Pesquet, E., Grönlund, A., Small, I., & Strand, Å. Plant Physiology, 176(2): 1199–1214. February 2018.
Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases [link]Paper   doi   link   bibtex   5 downloads  
Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Díaz, M. G., Hernández-Verdeja, T., Kremnev, D., Crawford, T., Dubreuil, C., & Strand, Å. Nature Communications, 9(1): 50. December 2018.
Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana [link]Paper   doi   link   bibtex   3 downloads  
Retrograde Signals Navigate the Path to Chloroplast Development. Hernández-Verdeja, T., & Strand, Å. Plant Physiology, 176(2): 967–976. February 2018.
Retrograde Signals Navigate the Path to Chloroplast Development [link]Paper   doi   link   bibtex   abstract   1 download  
The role of retrograde signals during plant stress responses. Crawford, T., Lehotai, N., & Strand, Å. Journal of Experimental Botany, 69(11): 2783–2795. May 2018.
The role of retrograde signals during plant stress responses [link]Paper   doi   link   bibtex   abstract   9 downloads  
  2017 (2)
A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development. Dubreuil, C., Ji, Y., Strand, Å., & Grönlund, A. Scientific Reports, 7(1): 13884. December 2017.
A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development [link]Paper   doi   link   bibtex  
Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light: Scots pine response to light intensity and shade. Razzak, A., Ranade, S. S., Strand, Å., & García-Gil, M. R. Plant, Cell & Environment, 40(8): 1332–1340. August 2017.
Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light: Scots pine response to light intensity and shade [link]Paper   doi   link   bibtex   3 downloads  
  2016 (1)
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Norén, L., Kindgren, P., Stachula, P., Rühl, M., Eriksson, M. E., Hurry, V., & Strand, Å. Plant Physiology, 171(2): 1392–1406. June 2016.
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth [link]Paper   doi   link   bibtex   abstract   6 downloads  
  2014 (1)
Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Blanco, N. E., Guinea-Díaz, M., Whelan, J., & Strand, Å. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640): 20130231. April 2014.
Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status [link]Paper   doi   link   bibtex   abstract   1 download  
  2013 (3)
Cyclin-dependent Kinase E1 (CDKE1) Provides a Cellular Switch in Plants between Growth and Stress Responses. Ng, S., Giraud, E., Duncan, O., Law, S. R., Wang, Y., Xu, L., Narsai, R., Carrie, C., Walker, H., Day, D. A., Blanco, N. E., Strand, Å., Whelan, J., & Ivanova, A. Journal of Biological Chemistry, 288(5): 3449–3459. February 2013.
Cyclin-dependent Kinase E1 (CDKE1) Provides a Cellular Switch in Plants between Growth and Stress Responses [link]Paper   doi   link   bibtex   3 downloads  
PAPP5 Is Involved in the Tetrapyrrole Mediated Plastid Signalling during Chloroplast Development. Barajas-López, J. d. D., Kremnev, D., Shaikhali, J., Piñas-Fernández, A., & Strand, Å. PLoS ONE, 8(3): e60305. March 2013.
PAPP5 Is Involved in the Tetrapyrrole Mediated Plastid Signalling during Chloroplast Development [link]Paper   doi   link   bibtex  
Plastid-to-nucleus communication, signals controlling the running of the plant cell. Barajas-López, J. d. D., Blanco, N. E., & Strand, Å. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(2): 425–437. February 2013.
Plastid-to-nucleus communication, signals controlling the running of the plant cell [link]Paper   doi   link   bibtex   abstract  
  2012 (4)
Interplay between HEAT SHOCK PROTEIN 90 and HY5 Controls PhANG Expression in Response to the GUN5 Plastid Signal. Kindgren, P., Norén, L., Barajas López, J. d. D., Shaikhali, J., & Strand, Å. Molecular Plant, 5(4): 901–913. July 2012.
Interplay between HEAT SHOCK PROTEIN 90 and HY5 Controls PhANG Expression in Response to the GUN5 Plastid Signal [link]Paper   doi   link   bibtex   abstract   1 download  
Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Shaikhali, J., Norén, L., de Dios Barajas-López, J., Srivastava, V., König, J., Sauer, U. H., Wingsle, G., Dietz, K., & Strand, Å. Journal of Biological Chemistry, 287(33): 27510–27525. August 2012.
Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis [link]Paper   doi   link   bibtex  
The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis. Shaikhali, J., de Dios Barajas-Lopéz, J., Ötvös, K., Kremnev, D., Garcia, A. S., Srivastava, V., Wingsle, G., Bakó, L., & Strand, Å. The Plant Cell, 24(7): 3009–3025. July 2012.
The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis [link]Paper   doi   link   bibtex   2 downloads  
The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. Kindgren, P., Kremnev, D., Blanco, N. E., López, J. d. D. B., Fernández, A. P., Tellgren-Roth, C., Small, I., & Strand, Å. The Plant Journal, 70(2): 279–291. 2012. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2011.04865.x
The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus [link]Paper   doi   link   bibtex   abstract   1 download  
  2011 (1)
A novel proteomic approach reveals a role for Mg-protoporphyrin IX in response to oxidative stress. Kindgren, P., Eriksson, M., Benedict, C., Mohapatra, A., Gough, S. P., Hansson, M., Kieselbach, T., & Strand, Å. Physiologia Plantarum, 141(4): 310–320. 2011. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.2010.01440.x
A novel proteomic approach reveals a role for Mg-protoporphyrin IX in response to oxidative stress [link]Paper   doi   link   bibtex   abstract  
  2008 (1)
Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Fernández, A. P., & Strand, Å. Current Opinion in Plant Biology, 11(5): 509–513. October 2008.
Retrograde signaling and plant stress: plastid signals initiate cellular stress responses [link]Paper   doi   link   bibtex  
  2007 (2)
Genome-Wide Gene Expression Analysis Reveals a Critical Role for CRYPTOCHROME1 in the Response of Arabidopsis to High Irradiance. Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., & Strand, Å. Plant Physiology, 144(3): 1391–1406. July 2007.
Genome-Wide Gene Expression Analysis Reveals a Critical Role for CRYPTOCHROME1 in the Response of Arabidopsis to High Irradiance [link]Paper   doi   link   bibtex   abstract   2 downloads  
In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast. Ankele, E., Kindgren, P., Pesquet, E., & Strand, Å. The Plant Cell, 19(6): 1964–1979. June 2007.
In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast [link]Paper   doi   link   bibtex   abstract   1 download  
  2006 (1)
Plastid-to-Nucleus Signaling. Strand, Å., Kleine, T., & Chory, J. In Wise, R. R., & Hoober, J. K., editor(s), The Structure and Function of Plastids, of Advances in Photosynthesis and Respiration, pages 183–197. Springer Netherlands, Dordrecht, 2006.
Plastid-to-Nucleus Signaling [link]Paper   doi   link   bibtex   abstract  
  2004 (1)
Plastid-to-nucleus signalling. Strand, Å. Current Opinion in Plant Biology, 7(6): 621–625. December 2004.
Plastid-to-nucleus signalling [link]Paper   doi   link   bibtex   abstract  
  2002 (1)
Photosynthesis at Low Temperatures. Hurry, V., Druart, N., Cavaco, A., Gardeström, P., & Strand, Å. In Li, P. H., & Palva, E. T., editor(s), Plant Cold Hardiness: Gene Regulation and Genetic Engineering, pages 161–179. Springer US, Boston, MA, 2002.
Photosynthesis at Low Temperatures [link]Paper   doi   link   bibtex   abstract  
  2001 (1)
The Properties of the Chlorophyll a/b-Binding Proteins Lhca2 and Lhca3 Studied in Vivo Using Antisense Inhibition. Ganeteg, U., Strand, Å., Gustafsson, P., & Jansson, S. Plant Physiology, 127(1): 150–158. September 2001.
The Properties of the Chlorophyll a/b-Binding Proteins Lhca2 and Lhca3 Studied in Vivo Using Antisense Inhibition [link]Paper   link   bibtex   abstract  
  2000 (2)
Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Strand, Å., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., & Gardeström, P. The Plant Journal, 23(6): 759–770. 2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313x.2000.00847.x
Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract   1 download  
The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Hurry, V., Strand, Å., Furbank, R., & Stitt, M. The Plant Journal, 24(3): 383–396. 2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313x.2000.00888.x
The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract   1 download  
  1999 (1)
Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1. Strand, Å., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardeström, P., & Stitt, M. Plant Physiology, 119(4): 1387–1398. April 1999.
Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1 [link]Paper   doi   link   bibtex   abstract  
{tab=Svenska} Porträttbild av Åsa Strand som sitter i sitt kontor vid Umeå Plant Science CentreFoto: Mattias Pettersson

I den eukaryota cellen kodas inte bara proteiner i cellkärnan, utan mitokondrien och växternas kloroplaster har egna genom. Ett komplext nätverk av regulatoriska signaler koordinerar genuttryck från cellkärnan med genuttryck från organellerna.

Viktiga strukturer och metabolismvägar i mitokondrien och i växternas kloroplaster byggs upp både av proteiner som kodas i cellkärnan och av proteiner som uttrycks i organellen. Denna fördelning av information mellan de olika genomen kräver en rigoröst koordinerad reglering av genuttryck från kärnan och från organellerna.

För växten är detta nödvändigt för utveckling och tillväxt men även för fysiologisk anpassning, d.v.s. stresstolerans. Genuttryck i cellkärnan regleras av olika signaler som har sitt ursprung i organellerna och i min forskargrupp studerar vi dessa regulatoriska signaler. En ökad förståelse för hur kommunikationen mellan kloroplasten och cellkärnan fungerar skulle på sikt kunna leda till en bättre förmåga att modifiera växters stresstolerans och produktivitet.