{tab=Research}Vaughan Hurry standing infront of a tree.

Our primary research goal is to identify the key adaptive mechanisms that result in short- and long-term acquisition of abiotic stress tolerance. To address this, our research currently has two main themes: 1) how are environmental "signals" sensed and, in turn, converted into a genetic response, and 2) how is primary metabolism modulated in response to fluctuations in growth temperature. The outcomes from this research are being applied to developing new tools for increased stress tolerance in herbaceous crops and forest plantation species and to studies of how we can incorporate understanding of acclimation of primary metabolism into global circulation models.

One of the key questions on the international research agenda today is how various biotope, natural and cultivated, will respond to the changes to the environment resulting from human activities. Plant carbon metabolism plays a crucial role in determining the functioning of terrestrial ecosystems, the concentration of CO2 in the atmosphere and the mean annual temperature of the earth's surface. Each year, photosynthetic carbon assimilation removes ca. 120 gigatonnes (Gt) of carbon from the atmosphere, with much of this carbon being used by heterotrophic organisms (i.e. animals, fungi, and bacteria).

Two octagonal transparent plastic tents set up in a forest.Scaling up from laboratory based experiments to ecosystem – level responses can be facilitated by studies in intact systems. The experiment shown is from the CANIFLEX project where the fate of carbon taken up by the forest was tracked through the trees and the soil bioa and back to the atmosphere using stableisotopes. The impacts of environmental changes, such as altering nitrogen availability, could then be studied at different trophic levels within the intact forest stand. This large scale, multiyear study was carried out together with colleagues from UPSC (T. Näsholm) and SLU (P. Högberg and S. Linder).

In addition, plants return ca. 60 Gt carbon per year to the atmosphere via respiration when producing the energy and carbon intermediates necessary for biosynthesis and cellular maintenance. This is a very large flux compared with the ca. 8 Gt carbon per year released from the burning of fossil fuels. Thus, fundamental metabolic processes such as photosynthesis and respiration play a critical role in determining a wide range of ecological phenomena, from the productivity of individual plants, species fitness, particular environments, and the resulting species composition of particular biotopes. Understanding such processes, and how they respond to environmental perturbations, provides insight into the underlying mechanisms that will drive future phenotypic replacements in response to climate change. Growth temperature is one of the most important climate parameters that impacts on the global fluxes through these C-assimilatory and C-emission pathways.

For example, as part of the thermal acclimation process (i.e. adjustment in the rate of metabolism to compensate for a change in growth temperature), cold-grown leaves exhibit higher transcript and activity levels of photosynthetic and sucrose synthesis enzymes, accompanied by increased capacity of mitochondrial electron transport than their warm-grown counterparts. As a result, sustained exposure to low growth temperatures typically results in an increase in the rate of assimilation and respiration at low temperatures. Given the predicted increase in the annual mean temperature of the Earth's surface, a major challenge for plant ecology and climate-vegetation modelling is identifying whether sustained changes in growth temperature will systematically alter the leaf-trait scaling relationships linking assimilation and respiration to leaf mass to area ratio and nitrogen concentrations.

To answer this challenge, a far better understanding of the responses of organellar functions to fluctuations in environmental inputs (e.g. temperature, water and nutrients) is required. We have shown that incorporating acclimation into the predictive models results in significant regional effects on the prevalence of different functional groups in different biomes. For example, it alters the predictions of the abundance of needle trees in the boreal forest zone relative to broad-leafed trees. Such changes will have very significant consequences for major industries such as Sweden's forest industry and consequently for the national economy. Our future research will develop additional data sets to incorporate acclimation to temperature,variations in response to altered soil nutritional status, rainfall, etc. to improve the predictive capacity of climate models.

Key Publications

  • Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S.G., Campbell, C., Hurry, V., Linder, S., Högberg, M.N. (2013). Are ectomycorrhizal fungi alleviating or aggravating the N limitation to tree growth in boreal forests? New Phytologist. 198: 214-221.
  • Ruelland, E., Vaultier, M.N., Zachowski, A., Hurry, V. (2009). Cold signalling and cold acclimation in plants. Advances in Botanical Research, 49: 36-149.
  • Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford JW, Woodward FI, Hurry V (2008). Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Global Change Biology, 14: 2709-2726.
  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2008). High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil micro- organisms. New Phytologist, 177: 220-228.
  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007). Acclimation of photosynthesis and respira- tion in response to changes in growth temperature is asynchronous across plant functional groups. New Phytologist, 176: 375–389
{tab=Team}
  • Personnel Image
    Aro, Tuuli
    PhD Student
    E-mail
    Room: B5-18-45
  • Personnel Image
    Castro, David
    PostDoc
    E-mail
    Room: B5-16-45
  • Personnel Image
    Hurry, Vaughan
    Professor
    E-mail
    Room: B5-46-45
    Website
  • Personnel Image
    Wang, Huibin
    PostDoc
    E-mail
    Room: B5-50-45

{tab=CV V. Hurry}
  • 2007: Professor, Umeå University
  • 2003: Associate Professor, Umeå University
  • 2002: Docent, Umeå University
  • 1996-1998: von Humboldt Research Fellow, Botanical Institute, University of Heidelberg
  • 1998: Assistant Professor, Umeå University
  • 1994-1996: Post doc, Research School of Biological Sciences, Australian National University
  • 1992-1993: Post doc, Umeå University
  • 1992: Ph.D. (Plant Sciences), University of Western Ontario
  • 1988: M.Sc. (Agriculture), University of Sydney
  • 1984: B.Sc. (Forestry), Australian National University 
{tab=Publications}
  2022 (4)
Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests. Law, S. R., Serrano, A. R., Daguerre, Y., Sundh, J., Schneider, A. N., Stangl, Z. R., Castro, D., Grabherr, M., Näsholm, T., Street, N. R., & Hurry, V. Proceedings of the National Academy of Sciences, 119(26): e2118852119. June 2022.
Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests [link]Paper   doi   link   bibtex   abstract  
Norway spruce deploys tissue-specific responses during acclimation to cold. Vergara, A., Haas, J. C., Aro, T., Stachula, P., Street, N. R., & Hurry, V. Plant, Cell & Environment, 45(2). February 2022.
Norway spruce deploys tissue-specific responses during acclimation to cold [link]Paper   doi   link   bibtex   abstract  
Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile. Castro, D., Concha, C., Jamett, F., Ibáñez, C., & Hurry, V. Plants, 11(20): 2717. October 2022.
Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile [link]Paper   doi   link   bibtex   abstract  
The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. Ivanov, A. G., Krol, M., Savitch, L. V., Szyszka-Mroz, B., Roche, J., Sprott, D. P., Selstam, E., Wilson, K. W., Gardiner, R., Öquist, G., Hurry, V. M., & Hüner, N. P. A. Planta, 255(2): 36. January 2022.
The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation [link]Paper   doi   link   bibtex   abstract  
  2021 (4)
Acclimation of leaf respiration temperature responses across thermally contrasting biomes. Zhu, L., Bloomfield, K. J., Asao, S., Tjoelker, M. G., Egerton, J. J., Hayes, L., Weerasinghe, L. K., Creek, D., Griffin, K. L., Hurry, V., Liddell, M., Meir, P., Turnbull, M. H., & Atkin, O. K. New Phytologist, 229(3): 1312–1325. February 2021.
Acclimation of leaf respiration temperature responses across thermally contrasting biomes [link]Paper   doi   link   bibtex   1 download  
Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. Haas, J. C, Vergara, A., Serrano, A. R, Mishra, S., Hurry, V., & Street, N. R Tree Physiology, 41(7): 1230–1246. July 2021.
Candidate regulators and target genes of drought stress in needles and roots of Norway spruce [link]Paper   doi   link   bibtex   abstract   17 downloads  
Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce. Schneider, A. N., Sundh, J., Sundström, G., Richau, K., Delhomme, N., Grabherr, M., Hurry, V., & Street, N. R. mSystems, 6(1). February 2021.
Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce [link]Paper   doi   link   bibtex   abstract   15 downloads  
Effects of Early, Small-Scale Nitrogen Addition on Germination and Early Growth of Scots Pine (Pinus sylvestris) Seedlings and on the Recruitment of the Root-Associated Fungal Community. Castro, D., Schneider, A. N., Holmlund, M., Näsholm, T., Street, N. R., & Hurry, V. Forests, 12(11): 1589. November 2021.
Effects of Early, Small-Scale Nitrogen Addition on Germination and Early Growth of Scots Pine (Pinus sylvestris) Seedlings and on the Recruitment of the Root-Associated Fungal Community [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2020 (2)
Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination. Colesie, C., Stangl, Z. R., & Hurry, V. BMC Ecology, 20(1): 63. December 2020.
Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination [link]Paper   doi   link   bibtex   abstract  
Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Yang, Q., Blanco, N. E., Hermida-Carrera, C., Lehotai, N., Hurry, V., & Strand, Å. Nature Communications, 11(1): 128. December 2020.
Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2019 (2)
Can leaf net photosynthesis acclimate to rising and more variable temperatures?. Vico, G., Way, D. A., Hurry, V., & Manzoni, S. Plant, Cell & Environment, 42(6): 1913–1928. June 2019.
Can leaf net photosynthesis acclimate to rising and more variable temperatures? [link]Paper   doi   link   bibtex  
Why does nitrogen addition to forest soils inhibit decomposition?. Bonner, M. T., Castro, D., Schneider, A. N., Sundström, G., Hurry, V., Street, N. R., & Näsholm, T. Soil Biology and Biochemistry, 137: 107570. October 2019.
Why does nitrogen addition to forest soils inhibit decomposition? [link]Paper   doi   link   bibtex  
  2018 (3)
Can Antarctic lichens acclimatize to changes in temperature?. Colesie, C., Büdel, B., Hurry, V., & Green, T. G. A. Global Change Biology, 24(3): 1123–1135. March 2018.
Can Antarctic lichens acclimatize to changes in temperature? [link]Paper   doi   link   bibtex  
Contrasting acclimation abilities of two dominant boreal conifers to elevated CO $_{\textrm{2}}$ and temperature: CO $_{\textrm{2}}$ and warming effects on spruce and pine. Kurepin, L. V., Stangl, Z. R., Ivanov, A. G., Bui, V., Mema, M., Hüner, N. P., Öquist, G., Way, D., & Hurry, V. Plant, Cell & Environment, 41(6): 1331–1345. June 2018.
Contrasting acclimation abilities of two dominant boreal conifers to elevated CO $_{\textrm{2}}$ and temperature: CO $_{\textrm{2}}$ and warming effects on spruce and pine [link]Paper   doi   link   bibtex  
Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Haas, J. C., Street, N. R., Sjödin, A., Lee, N. M., Högberg, M. N., Näsholm, T., & Hurry, V. Soil Biology and Biochemistry, 125: 197–209. October 2018.
Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest [link]Paper   doi   link   bibtex   2 downloads  
  2017 (3)
Informing climate models with rapid chamber measurements of forest carbon uptake. Metcalfe, D. B., Ricciuto, D., Palmroth, S., Campbell, C., Hurry, V., Mao, J., Keel, S. G., Linder, S., Shi, X., Näsholm, T., Ohlsson, K. E. A., Blackburn, M., Thornton, P. E., & Oren, R. Global Change Biology, 23(5): 2130–2139. May 2017.
Informing climate models with rapid chamber measurements of forest carbon uptake [link]Paper   doi   link   bibtex  
Metabolic reprogramming in response to cold stress is like real estate, it's all about location. Hurry, V. Plant, Cell & Environment, 40(5): 599–601. 2017. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.12923
Metabolic reprogramming in response to cold stress is like real estate, it's all about location [link]Paper   doi   link   bibtex   abstract  
Thermal limits of leaf metabolism across biomes. O'sullivan, O. S., Heskel, M. A., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., Zhu, L., Egerton, J. J. G., Bloomfield, K. J., Creek, D., Bahar, N. H. A., Griffin, K. L., Hurry, V., Meir, P., Turnbull, M. H., & Atkin, O. K. Global Change Biology, 23(1): 209–223. January 2017.
Thermal limits of leaf metabolism across biomes [link]Paper   doi   link   bibtex  
  2016 (3)
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Norén, L., Kindgren, P., Stachula, P., Rühl, M., Eriksson, M. E., Hurry, V., & Strand, Å. Plant Physiology, 171(2): 1392–1406. June 2016.
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth [link]Paper   doi   link   bibtex   abstract   6 downloads  
Convergence in the temperature response of leaf respiration across biomes and plant functional types. Heskel, M. A., O’Sullivan, O. S., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., Egerton, J. J. G., Creek, D., Bloomfield, K. J., Xiang, J., Sinca, F., Stangl, Z. R., Martinez-de la Torre, A., Griffin, K. L., Huntingford, C., Hurry, V., Meir, P., Turnbull, M. H., & Atkin, O. K. Proceedings of the National Academy of Sciences, 113(14): 3832–3837. April 2016.
Convergence in the temperature response of leaf respiration across biomes and plant functional types [link]Paper   doi   link   bibtex   abstract  
HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression. Noren, L., Kindgren, P., Stachula, P., Ruhl, M., Eriksson, M. E., Hurry, V., & Strand, A. Plant Physiology,pp.00374.2016. April 2016.
HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression. [link]Paper   doi   link   bibtex   4 downloads  
  2015 (1)
Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Huner, N. P. Photosynth Res, 126(2-3): 221–35. December 2015. Edition: 2015/04/01
Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions [link]Paper   doi   link   bibtex   abstract  
  2014 (2)
Genetics of superior growth traits in trees are being mapped but will the faster-growing risk-takers make it in the wild?. Nasholm, T., Palmroth, S., Ganeteg, U., Moshelion, M., Hurry, V., & Franklin, O. Tree Physiology, 34(11): 1141–1148. November 2014.
Genetics of superior growth traits in trees are being mapped but will the faster-growing risk-takers make it in the wild? [link]Paper   doi   link   bibtex  
Snowed in for survival: Quantifying the risk of winter damage to overwintering field crops in northern temperate latitudes. Vico, G., Hurry, V., & Weih, M. Agricultural and Forest Meteorology, 197: 65–75. October 2014.
Snowed in for survival: Quantifying the risk of winter damage to overwintering field crops in northern temperate latitudes [link]Paper   doi   link   bibtex  
  2013 (2)
Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?. Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell, C., Hurry, V., Linder, S., & Högberg, M. N. New Phytologist, 198(1): 214–221. April 2013.
Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? [link]Paper   doi   link   bibtex  
Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation. Kurepin, L., Dahal, K., Savitch, L., Singh, J., Bode, R., Ivanov, A., Hurry, V., & Hüner, N. International Journal of Molecular Sciences, 14(6): 12729–12763. June 2013.
Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation [link]Paper   doi   link   bibtex  
  2012 (2)
Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. Keel, S. G., Campbell, C. D., Högberg, M. N., Richter, A., Wild, B., Zhou, X., Hurry, V., Linder, S., Näsholm, T., & Högberg, P. New Phytologist, 194(4): 972–981. June 2012.
Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season [link]Paper   doi   link   bibtex  
Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Ivanov, A. G., Rosso, D., Savitch, L. V., Stachula, P., Rosembert, M., Oquist, G., Hurry, V., & Hüner, N. P. A. Photosynthesis Research, 113(1-3): 191–206. September 2012.
Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana [link]Paper   doi   link   bibtex  
  2011 (1)
Leaf respiration and alternative oxidase in field‐grown alpine grasses respond to natural changes in temperature and light. Searle, S. Y., Thomas, S., Griffin, K. L., Horton, T., Kornfeld, A., Yakir, D., Hurry, V., & Turnbull, M. H. New Phytologist, 189(4): 1027–1039. March 2011.
Leaf respiration and alternative oxidase in field‐grown alpine grasses respond to natural changes in temperature and light [link]Paper   doi   link   bibtex  
  2010 (3)
Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits: Impacts of growth temperature on scaling relationships. Atkinson, L. J., Campbell, C. D., Zaragoza-Castells, J., Hurry, V., & Atkin, O. K. Functional Ecology, 24(6): 1181–1191. December 2010.
Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits: Impacts of growth temperature on scaling relationships [link]Paper   doi   link   bibtex  
Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest: Drought affects rain forest leaf respiration. Metcalfe, D. B., Lobo-do-Vale, R., Chaves, M. M., Maroco, J. P., C Aragão, L. E. O., Malhi, Y., Da Costa, A. L., Braga, A. P., Gonçalves, P. L., De Athaydes, J., Da Costa, M., Almeida, S. S., Campbell, C., Hurry, V., Williams, M., & Meir, P. Functional Ecology, 24(3): 524–533. June 2010.
Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest: Drought affects rain forest leaf respiration [link]Paper   doi   link   bibtex  
Quantification of effects of season and nitrogen supply on tree below‐ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. Högberg, M. N., Briones, M. J. I., Keel, S. G., Metcalfe, D. B., Campbell, C., Midwood, A. J., Thornton, B., Hurry, V., Linder, S., Näsholm, T., & Högberg, P. New Phytologist, 187(2): 485–493. July 2010.
Quantification of effects of season and nitrogen supply on tree below‐ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest [link]Paper   doi   link   bibtex  
  2009 (3)
Chapter 2 Cold Signalling and Cold Acclimation in Plants. Ruelland, E., Vaultier, M., Zachowski, A., & Hurry, V. In Advances in Botanical Research, volume 49, pages 35–150. Elsevier, 2009.
Chapter 2 Cold Signalling and Cold Acclimation in Plants [link]Paper   doi   link   bibtex   2 downloads  
Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. Lundmark, M., Hurry, V., & Lapointe, L. Journal of Experimental Botany, 60(7): 2203–2213. May 2009.
Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development [link]Paper   doi   link   bibtex  
Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. Atkin, O. K., Sherlock, D., Fitter, A. H., Jarvis, S., Hughes, J. K., Campbell, C., Hurry, V., & Hodge, A. New Phytologist, 182(1): 188–199. April 2009.
Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi [link]Paper   doi   link   bibtex  
  2008 (4)
High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. Högberg, P., Högberg, M. N., Göttlicher, S. G., Betson, N. R., Keel, S. G., Metcalfe, D. B., Campbell, C., Schindlbacher, A., Hurry, V., Lundmark, T., Linder, S., & Näsholm, T. New Phytologist, 177(1): 220–228. January 2008.
High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms [link]Paper   doi   link   bibtex  
Photosystem II reaction centre quenching: mechanisms and physiological role. Ivanov, A. G., Sane, P. V., Hurry, V., Öquist, G., & Huner, N. P. A. Photosynthesis Research, 98(1-3): 565–574. October 2008.
Photosystem II reaction centre quenching: mechanisms and physiological role [link]Paper   doi   link   bibtex  
Reaction centre quenching of excess light energy and photoprotection of photosystem II. Ivanov, A. G., Hurry, V., Sane, P. V., Öquist, G., & Huner, N. P. A. Journal of Plant Biology, 51(2): 85. March 2008.
Reaction centre quenching of excess light energy and photoprotection of photosystem II [link]Paper   doi   link   bibtex   abstract  
Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model: THERMAL HISTORY AND RESPIRATORY ACCLIMATION. Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., Zaragoza-Castells, J., Pitchford, J. W., Woodward, F. I., & Hurry, V. Global Change Biology, 14(11): 2709–2726. November 2008.
Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model: THERMAL HISTORY AND RESPIRATORY ACCLIMATION [link]Paper   doi   link   bibtex  
  2007 (4)
Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. Campbell, C., Atkinson, L., Zaragoza‐Castells, J., Lundmark, M., Atkin, O., & Hurry, V. New Phytologist, 176(2): 375–389. October 2007.
Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group [link]Paper   doi   link   bibtex  
Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Zaragoza-Castells, J., Sánchez-Gómez, D., Valladares, F., Hurry, V., & Atkin, O. K. Plant, Cell & Environment, 30(7): 820–833. July 2007.
Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves [link]Paper   doi   link   bibtex  
The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Keech, O., Pesquet, E., Ahad, A., Askne, A., Nordvall, D., Vodnala, S. M., Tuominen, H., Hurry, V., Dizengremel, P., & Gardeström, P. Plant, Cell & Environment, 30(12): 1523–1534. December 2007.
The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves [link]Paper   doi   link   bibtex  
Unintentional changes of defence traits in GM trees can influence plant–herbivore interactions. Hjältén, J., Lindau, A., Wennström, A., Blomberg, P., Witzell, J., Hurry, V., & Ericson, L. Basic and Applied Ecology, 8(5): 434–443. September 2007.
Unintentional changes of defence traits in GM trees can influence plant–herbivore interactions [link]Paper   doi   link   bibtex  
  2006 (12)
A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Zheng, B., MacDonald, T. M., Sutinen, S., Hurry, V., & Clarke, A. K. Planta, 224(5): 1103–1115. October 2006.
A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Ivanov, A. G., Krol, M., Sveshnikov, D., Malmberg, G., Gardestrom, P., Hurry, V., Oquist, G., & Huner, N. P. A. Planta, 223(6): 1165–1177. May 2006. Place: New York Publisher: Springer WOS:000237335300006
doi   link   bibtex   abstract  
Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis. Hendrickson, L., Vlčková, A., Selstam, E., Huner, N., Öquist, G., & Hurry, V. FEBS Letters, 580(20): 4959–4968. September 2006.
Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis [link]Paper   doi   link   bibtex   abstract  
Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Benedict, C., Geisler, M., Trygg, J., Huner, N., & Hurry, V. Plant Physiology, 141(4): 1219–1232. August 2006. Place: Rockville Publisher: Amer Soc Plant Biologists WOS:000239636800007
doi   link   bibtex   abstract  
Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Ivanov, A. G., Hendrickson, L., Krol, M., Selstam, E., Oquist, G., Hurry, V., & Huner, N. P. A. Plant & Cell Physiology, 47(8): 1146–1157. August 2006.
doi   link   bibtex   abstract  
IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Rosso, D., Ivanov, A. G., Fu, A., Geisler-Lee, J., Hendrickson, L., Geisler, M., Stewart, G., Krol, M., Hurry, V., Rodermel, S. R., Maxwell, D. P., & Hüner, N. P. A. Plant Physiology, 142(2): 574–585. October 2006.
doi   link   bibtex   abstract  
Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Druart, N., Rodriguez-Buey, M., Barron-Gafford, G., Sjodin, A., Bhalerao, R. P., & Hurry, V. Functional Plant Biology, 33(2): 121–131. 2006. Place: Clayton Publisher: Csiro Publishing WOS:000235065100002
doi   link   bibtex   abstract  
Nocturnal changes in leaf growth of Populus deltoides are controlled by cytoplasmic growth. Matsubara, S., Hurry, V., Druart, N., Benedict, C., Janzik, I., Chavarria-Krauser, A., Walter, A., & Schurr, U. Planta, 223(6): 1315–1328. May 2006. Place: New York Publisher: Springer WOS:000237335300020
doi   link   bibtex   abstract  
Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching. Huner, N. P., Ivanov, A. G., Sane, P. V., Pocock, T., Król, M., Balseris, A., Rosso, D., Savitch, L. V., Hurry, V. M., & Öquist, G. In Demmig-Adams, B., Adams, W. W., & Mattoo, A. K., editor(s), Photoprotection, Photoinhibition, Gene Regulation, and Environment, of Advances in Photosynthesis and Respiration, pages 155–173. Springer Netherlands, Dordrecht, 2006.
Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching [link]Paper   doi   link   bibtex   abstract  
Plant cold and abiotic stress gets hot. Guy, C., Porat, R., & Hurry, V. Physiologia Plantarum, 126(1): 1–4. January 2006. Place: Malden Publisher: Wiley-Blackwell WOS:000234672300001
doi   link   bibtex  
The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Benedict, C., Skinner, J. S., Meng, R., Chang, Y., Bhalerao, R. P., Huner, N. P. A., Finn, C. E., Chen, T. H. H., & Hurry, V. Plant Cell and Environment, 29(7): 1259–1272. July 2006. Place: Hoboken Publisher: Wiley WOS:000238064400006
doi   link   bibtex   abstract   1 download  
The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature: Response of the soluble chloroplast proteomes to cold acclimation. Goulas, E., Schubert, M., Kieselbach, T., Kleczkowski, L. A., Gardeström, P., Schröder, W., & Hurry, V. The Plant Journal, 47(5): 720–734. September 2006.
The chloroplast lumen and stromal proteomes of <i>Arabidopsis thaliana</i> show differential sensitivity to short- and long-term exposure to low temperature: <i>Response of the soluble chloroplast proteomes to cold acclimation</i> [link]Paper   doi   link   bibtex   1 download  
  2005 (3)
New in Physiologia Plantarum. Gardestrom, P., & Hurry, V. Physiologia Plantarum, 124(1): 1–3. May 2005. Place: Hoboken Publisher: Wiley WOS:000228975000001
doi   link   bibtex  
Respiration in Photosynthetic Cells: Gas Exchange Components, Interactions with Photorespiration and the Operation of Mitochondria in the Light. Hurry, V., Igamberdiev, A. U., Keerberg, O., Pärnik, T., Atkin, O. K., Zaragoza-Castells, J., & Gardeström, P. In Lambers, H., & Ribas-Carbo, M., editor(s), Plant Respiration: From Cell to Ecosystem, of Advances in Photosynthesis and Respiration, pages 43–61. Springer Netherlands, Dordrecht, 2005.
Respiration in Photosynthetic Cells: Gas Exchange Components, Interactions with Photorespiration and the Operation of Mitochondria in the Light [link]Paper   doi   link   bibtex   abstract  
The hot and the cold: unravelling the variable response of plant respiration to temperature. Atkin, O. K., Bruhn, D., Hurry, V., & Tjoelker, M. G. Functional Plant Biology, 32(2): 87–105. 2005. Place: Clayton Publisher: Csiro Publishing WOS:000227247600001
doi   link   bibtex   abstract  
  2002 (4)
A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Stitt, M., & Hurry, V. Current Opinion in Plant Biology, 5(3): 199–206. June 2002.
A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Low growth temperature inhibition of photosynthesis in cotyledons of jack pine seedlings (Pinus banksiana) is due to impaired chloroplast development. Krol, M., Hurry, V., Maxwell, D. P., Malek, L., Ivanov, A. G., & Huner, N. P. A. Canadian Journal of Botany-Revue Canadienne De Botanique, 80(10): 1042–1051. October 2002. Place: Ottawa Publisher: Canadian Science Publishing WOS:000179039600003
Low growth temperature inhibition of photosynthesis in cotyledons of jack pine seedlings (Pinus banksiana) is due to impaired chloroplast development [link]Paper   doi   link   bibtex   abstract  
Photosynthesis at Low Temperatures. Hurry, V., Druart, N., Cavaco, A., Gardeström, P., & Strand, Å. In Li, P. H., & Palva, E. T., editor(s), Plant Cold Hardiness: Gene Regulation and Genetic Engineering, pages 161–179. Springer US, Boston, MA, 2002.
Photosynthesis at Low Temperatures [link]Paper   doi   link   bibtex   abstract  
Plant odyssey - Adaptation of plants to cold. Stitt, M., & Hurry, V. Biofutur, (224): 18–21. August 2002. Place: Paris Cedex 15 Publisher: Editions Scientifiques Medicales Elsevier WOS:000177435900003
Plant odyssey - Adaptation of plants to cold [link]Paper   link   bibtex   abstract  
  2001 (3)
Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Savitch, L. V., Barker-Åstrom, J., Ivanov, A. G., Hurry, V., Öquist, G., Huner, N. P., & Gardeström, P. Planta, 214(2): 295–303. December 2001.
Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma [link]Paper   doi   link   bibtex   abstract  
Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Ciereszko, I., Johansson, H., Hurry, V., & Kleczkowski, L. A. Planta, 212(4): 598–605. March 2001.
Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis [link]Paper   doi   link   bibtex   abstract   1 download  
Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: The role of growth temperature and irradiance. Pocock, T. H., Hurry, V., Savitch, L. V., & Huner, N. P. A. Physiologia Plantarum, 113(4): 499–506. 2001. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1130408.x
Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: The role of growth temperature and irradiance [link]Paper   doi   link   bibtex   abstract  
  2000 (1)
The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Hurry, V., Strand, Å., Furbank, R., & Stitt, M. The Plant Journal, 24(3): 383–396. 2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313x.2000.00888.x
The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract   1 download  
  1999 (1)
Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1. Strand, Å., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardeström, P., & Stitt, M. Plant Physiology, 119(4): 1387–1398. April 1999.
Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1 [link]Paper   doi   link   bibtex   abstract  
{tab=Svenska} Vaughan Hurry som står framför ett träd

Stora utmaningar ligger framför oss när vi måste minska mängden utsläpp av växthusgaser för att bromsa klimatförändringarna samtidigt som jordens befolkning ökar. Framtidens jord- och skogsbruk kommer att kräva ökade uttag från odlingsarealer som redan i vissa områden är maximerade. Dessutom går stora arealer förlorade årligen på grund av stresskador orsakade av exempelvis kyla.

Skördeförluster orsakade av stress kommer att öka vid en klimatförändring som medför större nyckfullhet och svängningar i väderleken. För att minska förlusterna och därmed öka avkastningen krävs en större förståelse för de komponenter som är involverade i växters stressrespons.

I vår forskning vill vi förstå hur växter känner av förändringar i miljön och hur växterna använder den informationen för att förändra genuttryck och initiera anpassningsmekanismer. Vi studerar även i detalj hur växternas metabolism påverkas under förändrade odlingsbetingelser. Genom att identifiera de nyckelkomponenter som ger ökad härdighet kan dessa utnyttjas vid förädlingsarbete av jordbruksgrödor och skogsträd. Våra resultat är även av stor betydelse för att ta fram korrekta parametrar till vegetations– och klimatmodeller.