Analysis of lignin produced by cinnamyl alcohol dehydrogenase-deficient Pinus taeda cultured cells.
Stasolla, C., Scott, J., Egertsdotter, U., Kadla, J., O’ Malley, D., Sederoff, R., & van Zyl, L.
Plant Physiology and Biochemistry, 41(5): 439–445. May 2003.
Paper
doi
link
bibtex
abstract
@article{stasolla_analysis_2003,
title = {Analysis of lignin produced by cinnamyl alcohol dehydrogenase-deficient {Pinus} taeda cultured cells},
volume = {41},
issn = {0981-9428},
url = {https://www.sciencedirect.com/science/article/pii/S0981942803000512},
doi = {10/bkcwgq},
abstract = {Comparative studies were conducted on composition of lignin produced both in vivo and in vitro by cinnamyl alcohol dehydrogenase (CAD)-deficient mutant loblolly pine (Pinus taeda L.). In vivo studies were performed using differentiating xylem obtained from two genotypes of heterozygous (CAD/cad) and two genotypes of homozygous (cad/cad) CAD-deficient mutant trees. In vitro studies were performed using a culture system in which cells, generated from the same genotypes, were induced to produce lignin in culture. Steady state RNA levels and enzyme activity of CAD were dramatically reduced in both xylem and cultured cells obtained from homozygous mutant trees, compared to their heterozygous counterparts. Light microscopic studies showed pronounced differences during the lignin formation between homozygous and heterozygous cells. Phenolic compounds in the heterozygous (CAD/cad) cells were deposited around the cell wall, accumulated preferentially in vacuoles of the homozygous (cad/cad) cells. Differences in lignin composition as revealed by thioacidolysis were also observed. Lignin of both xylem tissue and cultured cells obtained from CAD-deficient homozygotes showed lower levels of coniferyl alcohols and significant enrichments in dihydroconiferyl alcohol (DHCA) and coniferyl aldehyde, compared to their heterozygous counterparts. The striking similarities in lignin composition observed both in vivo and in vitro, open new possibilities for the use of culture systems aimed at revealing the mechanisms controlling lignin biosynthesis, and the formation of DHCA subunits.},
language = {en},
number = {5},
urldate = {2021-07-05},
journal = {Plant Physiology and Biochemistry},
author = {Stasolla, Claudio and Scott, Jay and Egertsdotter, Ulrika and Kadla, John and O’ Malley, David and Sederoff, Ronald and van Zyl, Leonel},
month = may,
year = {2003},
keywords = {Cinnamyl alcohol dehydrogenase, Cultured cells, Dihydroconiferyl alcohol, Lignin, Xylem},
pages = {439--445},
}
Comparative studies were conducted on composition of lignin produced both in vivo and in vitro by cinnamyl alcohol dehydrogenase (CAD)-deficient mutant loblolly pine (Pinus taeda L.). In vivo studies were performed using differentiating xylem obtained from two genotypes of heterozygous (CAD/cad) and two genotypes of homozygous (cad/cad) CAD-deficient mutant trees. In vitro studies were performed using a culture system in which cells, generated from the same genotypes, were induced to produce lignin in culture. Steady state RNA levels and enzyme activity of CAD were dramatically reduced in both xylem and cultured cells obtained from homozygous mutant trees, compared to their heterozygous counterparts. Light microscopic studies showed pronounced differences during the lignin formation between homozygous and heterozygous cells. Phenolic compounds in the heterozygous (CAD/cad) cells were deposited around the cell wall, accumulated preferentially in vacuoles of the homozygous (cad/cad) cells. Differences in lignin composition as revealed by thioacidolysis were also observed. Lignin of both xylem tissue and cultured cells obtained from CAD-deficient homozygotes showed lower levels of coniferyl alcohols and significant enrichments in dihydroconiferyl alcohol (DHCA) and coniferyl aldehyde, compared to their heterozygous counterparts. The striking similarities in lignin composition observed both in vivo and in vitro, open new possibilities for the use of culture systems aimed at revealing the mechanisms controlling lignin biosynthesis, and the formation of DHCA subunits.
Photosynthetic Acclimation Is Reflected in Specific Patterns of Gene Expression in Drought-Stressed Loblolly Pine.
Watkinson, J. I., Sioson, A. A., Vasquez-Robinet, C., Shukla, M., Kumar, D., Ellis, M., Heath, L. S., Ramakrishnan, N., Chevone, B., Watson, L. T., van Zyl, L., Egertsdotter, U., Sederoff, R. R., & Grene, R.
Plant Physiology, 133(4): 1702–1716. December 2003.
Paper
doi
link
bibtex
abstract
@article{watkinson_photosynthetic_2003,
title = {Photosynthetic {Acclimation} {Is} {Reflected} in {Specific} {Patterns} of {Gene} {Expression} in {Drought}-{Stressed} {Loblolly} {Pine}},
volume = {133},
issn = {0032-0889},
url = {https://doi.org/10.1104/pp.103.026914},
doi = {10.1104/pp.103.026914},
abstract = {Because the product of a single gene can influence many aspects of plant growth and development, it is necessary to understand how gene products act in concert and upon each other to effect adaptive changes to stressful conditions. We conducted experiments to improve our understanding of the responses of loblolly pine (Pinus taeda) to drought stress. Water was withheld from rooted plantlets of to a measured water potential of -1 MPa for mild stress and -1.5 MPa for severe stress. Net photosynthesis was measured for each level of stress. RNA was isolated from needles and used in hybridizations against a microarray consisting of 2,173 cDNA clones from five pine expressed sequence tag libraries. Gene expression was estimated using a two-stage mixed linear model. Subsequently, data mining via inductive logic programming identified rules (relationships) among gene expression, treatments, and functional categories. Changes in RNA transcript profiles of loblolly pine due to drought stress were correlated with physiological data reflecting photosynthetic acclimation to mild stress or photosynthetic failure during severe stress. Analysis of transcript profiles indicated that there are distinct patterns of expression related to the two levels of stress. Genes encoding heat shock proteins, late embryogenic-abundant proteins, enzymes from the aromatic acid and flavonoid biosynthetic pathways, and from carbon metabolism showed distinctive responses associated with acclimation. Five genes shown to have different transcript levels in response to either mild or severe stress were chosen for further analysis using real-time polymerase chain reaction. The real-time polymerase chain reaction results were in good agreement with those obtained on microarrays.},
number = {4},
urldate = {2021-07-05},
journal = {Plant Physiology},
author = {Watkinson, Jonathan I. and Sioson, Allan A. and Vasquez-Robinet, Cecilia and Shukla, Maulik and Kumar, Deept and Ellis, Margaret and Heath, Lenwood S. and Ramakrishnan, Naren and Chevone, Boris and Watson, Layne T. and van Zyl, Leonel and Egertsdotter, Ulrika and Sederoff, Ronald R. and Grene, Ruth},
month = dec,
year = {2003},
pages = {1702--1716},
}
Because the product of a single gene can influence many aspects of plant growth and development, it is necessary to understand how gene products act in concert and upon each other to effect adaptive changes to stressful conditions. We conducted experiments to improve our understanding of the responses of loblolly pine (Pinus taeda) to drought stress. Water was withheld from rooted plantlets of to a measured water potential of -1 MPa for mild stress and -1.5 MPa for severe stress. Net photosynthesis was measured for each level of stress. RNA was isolated from needles and used in hybridizations against a microarray consisting of 2,173 cDNA clones from five pine expressed sequence tag libraries. Gene expression was estimated using a two-stage mixed linear model. Subsequently, data mining via inductive logic programming identified rules (relationships) among gene expression, treatments, and functional categories. Changes in RNA transcript profiles of loblolly pine due to drought stress were correlated with physiological data reflecting photosynthetic acclimation to mild stress or photosynthetic failure during severe stress. Analysis of transcript profiles indicated that there are distinct patterns of expression related to the two levels of stress. Genes encoding heat shock proteins, late embryogenic-abundant proteins, enzymes from the aromatic acid and flavonoid biosynthetic pathways, and from carbon metabolism showed distinctive responses associated with acclimation. Five genes shown to have different transcript levels in response to either mild or severe stress were chosen for further analysis using real-time polymerase chain reaction. The real-time polymerase chain reaction results were in good agreement with those obtained on microarrays.
The Effects of Polyethylene Glycol on Gene Expression of Developing White Spruce Somatic Embryos.
Stasolla, C., van Zyl, L., Egertsdotter, U., Craig, D., Liu, W., & Sederoff, R. R.
Plant Physiology, 131(1): 49–60. January 2003.
Paper
doi
link
bibtex
abstract
1 download
@article{stasolla_effects_2003,
title = {The {Effects} of {Polyethylene} {Glycol} on {Gene} {Expression} of {Developing} {White} {Spruce} {Somatic} {Embryos}},
volume = {131},
issn = {0032-0889},
url = {https://doi.org/10.1104/pp.015214},
doi = {10/b6z454},
abstract = {Somatic embryogenic cultures of white spruce (Picea glauca) represent a valuable system to study molecular mechanisms regulating embryo development because many embryos of defined developmental stages can be generated. The inclusion of polyethylene glycol (PEG) in the maturation medium can improve the number and quality of embryos produced. To learn more about the mechanism of action of PEG, we analyzed transcript profiles of stage-specific embryos matured without (control) or with (PEG treated) PEG. RNA extracted from maturing spruce embryos was analyzed on DNA microarrays containing 2,178 cDNAs from loblolly pine (Pinus taeda). The efficiency of heterologous hybridization between spruce and pine species on microarrays has been documented previously (L. van Zyl, S. von Arnold, P. Bozhkov, Y. Chen, U. Egertsdotter, J. MacKay, R. Sederoff, J. Shen, L. Zelena, D. Clapham [2002] Comp Funct Genomics 3: 306–318). Several pine genes, including the apparent homologs to the Arabidopsis genes ZWILLE, FIDDLEHEAD, FUSCA, and SCARECROW, increased in expression after PEG treatments. These genes are known to be involved in the formation of the embryo body plan and in the control of the shoot and root apical meristems. The increased transcript levels of these genes in immature PEG-treated embryos suggest that PEG may improve the quality of spruce somatic embryos by promoting normal differentiation of the embryonic shoot and root. Changes in the transcript levels of many genes involved in sucrose catabolism and nitrogen assimilation and utilization were also observed between control and PEG-treated embryos.},
number = {1},
urldate = {2021-07-05},
journal = {Plant Physiology},
author = {Stasolla, Claudio and van Zyl, Leonel and Egertsdotter, Ulrika and Craig, Deborah and Liu, Wenbin and Sederoff, Ron R.},
month = jan,
year = {2003},
pages = {49--60},
}
Somatic embryogenic cultures of white spruce (Picea glauca) represent a valuable system to study molecular mechanisms regulating embryo development because many embryos of defined developmental stages can be generated. The inclusion of polyethylene glycol (PEG) in the maturation medium can improve the number and quality of embryos produced. To learn more about the mechanism of action of PEG, we analyzed transcript profiles of stage-specific embryos matured without (control) or with (PEG treated) PEG. RNA extracted from maturing spruce embryos was analyzed on DNA microarrays containing 2,178 cDNAs from loblolly pine (Pinus taeda). The efficiency of heterologous hybridization between spruce and pine species on microarrays has been documented previously (L. van Zyl, S. von Arnold, P. Bozhkov, Y. Chen, U. Egertsdotter, J. MacKay, R. Sederoff, J. Shen, L. Zelena, D. Clapham [2002] Comp Funct Genomics 3: 306–318). Several pine genes, including the apparent homologs to the Arabidopsis genes ZWILLE, FIDDLEHEAD, FUSCA, and SCARECROW, increased in expression after PEG treatments. These genes are known to be involved in the formation of the embryo body plan and in the control of the shoot and root apical meristems. The increased transcript levels of these genes in immature PEG-treated embryos suggest that PEG may improve the quality of spruce somatic embryos by promoting normal differentiation of the embryonic shoot and root. Changes in the transcript levels of many genes involved in sucrose catabolism and nitrogen assimilation and utilization were also observed between control and PEG-treated embryos.