{tab=Research} Alizée Malnoe in front of a bushPhoto: Queena Xu

Light in excess of photosynthetic capacity can be damaging to cells constituents. Thus ways to protect against damage have evolved in photosynthetic organisms, including ways to minimize light absorption, detoxify reactive oxygen species generated by excess light, and dissipate excess absorbed light. Together, these processes are known as photoprotection.

For more information see also our lab website at https://malnoelab.com.

Despite the physiological importance of photoprotection, the molecular mechanisms that protect against light stress, especially those protecting against sustained light stress, remain largely unknown. In my group, we combine genetics, biochemistry, biophysics and physiology to elucidate the molecular mechanisms of photoprotection under sustained abiotic stress. Our research will provide insights into fundamental mechanisms of light energy capture, utilization and dissipation in plants.

Collage of four images showing Arabidopsis plants in a growth cabinet on the left and flurorescence images on the rightArabidopsis plants and false-color images of chlorophyll fluorescence from Arabidopsis seedlings and Nicotiana leaf

Key Publications

{tab=Team}
  • Personnel Image
    Bru, Pierrick
    PhD Student
    E-mail
    Room: B4-18-45
  • Personnel Image
    Malnoë, Alizée
    Associate Professor
    E-mail
    Room:
    Website
  • Personnel Image
    Puggioni, Maria Paola
    PostDoc, Representative
    E-mail
    Room: B4-36-45

{tab=CV A. Malnoë}
  • 2022 - present: Associate Professor
  • 2018 - 2021: Assistant Professor

Department of Plant Physiology, Umeå University, Sweden.
Molecular mechanisms of sustained photoprotection. VR, MSCA IF-RI, Kempe, KAW, SSF ARC2030

  • 2012 - 2017: Postdoctoral Researcher

University of California Berkeley, USA. Advisor: Krishna K. Niyogi
Photoprotection mechanisms in Arabidopsis thaliana. US DOE FWP449B

University of California Berkeley, USA. Advisor: Krishna K. Niyogi
Photoprotection mechanisms in Arabidopsis thaliana. US DOE FWP449B

  • 2011 (6 months): Postdoctoral Researcher

CNRS UMR7141 IBPC Paris, France. Advisor: Francis-André Wollman
Role of the FtsH protease in Chlamydomonas reinhardtii. EU FP7 SUNBIOPATH

  • 2007 - 2011: Ph.D., Biology (with Honors)

CNRS UMR7141 IBPC Paris, France. Advisor: Catherine de Vitry.
Graduate School Plant Sciences, University of Paris-Sud XI, Orsay, France.
Cytochrome b6f heme ci function in Chlamydomonas reinhardtii. ANR BLANC

  • 2007 (6 months): Visiting Research Associate

University of Queensland, Brisbane, Australia. Advisor: Ben Hankamer
Biochemical and structural characterization of the photosynthetic apparatus during sulfur deprivation in Chlamydomonas reinhardtii.

  • 2006 (3 months): Undergraduate Researcher

LB3M, CEA Cadarache, France. Advisor: Laurent Cournac
Identification and characterization of NADH dehydrogenases type II in the microalga Chlamydomonas reinhardtii.

  • 2006 - 2007: M.Sc., Plant Genetic and Molecular Physiology (with Honors)

Graduate School Biology, Health & Biotechnologies
University of Paul-Sabatier, Toulouse, France

  • 2004 - 2007: Engineer in Agronomical Sciences

Ecole Nationale Supérieure Agronomique de Toulouse, France
French National School of Agricultural Sciences and Engineering

{tab=Publications}
  2023 (1)
A Simple Sonication Method to Isolate the Chloroplast Lumen in Arabidopsis thaliana. Hao, J., & Malnoë, A. Bio-protocol, 13(15): 4756. August 2023.
A Simple Sonication Method to Isolate the Chloroplast Lumen in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
  2022 (2)
Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. Yu, G., Hao, J., Pan, X., Shi, L., Zhang, Y., Wang, J., Fan, H., Xiao, Y., Yang, F., Lou, J., Chang, W., Malnoë, A., & Li, M. Nature Plants, 8(7): 840–855. July 2022. Number: 7 Publisher: Nature Publishing Group
Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH [link]Paper   doi   link   bibtex   abstract  
The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants. Bru, P., Steen, C. J., Park, S., Amstutz, C. L., Sylak-Glassman, E. J., Lam, L., Fekete, A., Mueller, M. J., Longoni, F., Fleming, G. R., Niyogi, K. K., & Malnoë, A. Journal of Biological Chemistry, 298(11): 102519. November 2022.
The major trimeric antenna complexes serve as a site for qH-energy dissipation in plants [link]Paper   doi   link   bibtex   abstract  
  2020 (2)
A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in Arabidopsis thaliana. Bru, P., Nanda, S., & Malnoë, A. Plants, 9(11): 1565. November 2020.
A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract   5 downloads  
An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Amstutz, C. L., Fristedt, R., Schultink, A., Merchant, S. S., Niyogi, K. K., & Malnoë, A. Nature Plants, 6(2): 154–166. February 2020.
An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis [link]Paper   doi   link   bibtex   abstract   2 downloads  
  2018 (2)
Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Malnoë, A. Environmental and Experimental Botany, 154: 123–133. October 2018.
Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH [link]Paper   doi   link   bibtex   abstract   5 downloads  
The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis. Malnoë, A., Schultink, A., Shahrasbi, S., Rumeau, D., Havaux, M., & Niyogi, K. K. The Plant Cell, 30(1): 196–208. January 2018.
The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis [link]Paper   doi   link   bibtex   abstract   1 download  
  2017 (1)
The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. Wang, F., Qi, Y., Malnoë, A., Choquet, Y., Wollman, F., & de Vitry, C. Molecular Plant, 10(1): 99–114. January 2017.
The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii [link]Paper   doi   link   bibtex   abstract  
  2015 (2)
Gordon research conference on photosynthesis: from evolution of fundamental mechanisms to radical re-engineering. Rappaport, F., Malnoe, A., & Govindjee Photosynth Res, 123(2): 213–23. February 2015. Edition: 2014/11/27
Gordon research conference on photosynthesis: from evolution of fundamental mechanisms to radical re-engineering [link]Paper   doi   link   bibtex   abstract  
Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Dent, R. M., Sharifi, M. N., Malnoe, A., Haglund, C., Calderon, R. H., Wakao, S., & Niyogi, K. K. Plant J, 82(2): 337–51. April 2015. Edition: 2015/02/26
Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants [link]Paper   doi   link   bibtex   abstract  
  2014 (3)
Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Sylak-Glassman, E. J., Malnoë, A., De Re, E., Brooks, M. D., Fischer, A. L., Niyogi, K. K., & Fleming, G. R. Proceedings of the National Academy of Sciences, 111(49): 17498–17503. December 2014.
Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots [link]Paper   doi   link   bibtex   abstract  
Nitric Oxide–Triggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen Starvation in Chlamydomonas reinhardtii. Wei, L., Derrien, B., Gautier, A., Houille-Vernes, L., Boulouis, A., Saint-Marcoux, D., Malnoë, A., Rappaport, F., de Vitry, C., Vallon, O., Choquet, Y., & Wollman, F. The Plant Cell, 26(1): 353–372. February 2014.
Nitric Oxide–Triggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen Starvation in <i>Chlamydomonas reinhardtii</i> [link]Paper   doi   link   bibtex   abstract  
Thylakoid FtsH Protease Contributes to Photosystem II and Cytochrome b 6 f Remodeling in Chlamydomonas reinhardtii under Stress Conditions. Malnoë, A., Wang, F., Girard-Bascou, J., Wollman, F., & de Vitry, C. The Plant Cell, 26(1): 373–390. February 2014.
Thylakoid FtsH Protease Contributes to Photosystem II and Cytochrome <i>b</i> 6 <i>f</i> Remodeling in <i>Chlamydomonas reinhardtii</i> under Stress Conditions [link]Paper   doi   link   bibtex   abstract  
  2013 (1)
A Conserved Rubredoxin Is Necessary for Photosystem II Accumulation in Diverse Oxygenic Photoautotrophs. Calderon, R. H., García-Cerdán, J. G., Malnoë, A., Cook, R., Russell, J. J., Gaw, C., Dent, R. M., de Vitry, C., & Niyogi, K. K. Journal of Biological Chemistry, 288(37): 26688–26696. September 2013.
A Conserved Rubredoxin Is Necessary for Photosystem II Accumulation in Diverse Oxygenic Photoautotrophs [link]Paper   doi   link   bibtex   abstract  
  2011 (1)
Photosynthetic growth despite a broken Q-cycle. Malnoë, A., Wollman, F., de Vitry, C., & Rappaport, F. Nature Communications, 2(1): 301. September 2011.
Photosynthetic growth despite a broken Q-cycle [link]Paper   doi   link   bibtex   abstract   1 download  
  2008 (1)
Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii. Nguyen, A. V., Thomas-Hall, S. R., Malnoë, A., Timmins, M., Mussgnug, J. H., Rupprecht, J., Kruse, O., Hankamer, B., & Schenk, P. M. Eukaryotic Cell, 7(11): 1965–1979. November 2008.
Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga <i>Chlamydomonas reinhardtii</i> [link]Paper   doi   link   bibtex   abstract  
{tab=Other publications}

Commentaries

Malnoë A (2022) In vivo oxidation by thioredoxin regulates chloroplast enzymes activity. Proc Natl Acad Sci USA 119:e2121408119. https://doi.org/10.1073/pnas.2121408119


Popular science contributions

Malnoë A (2018) Protection from the Sun: Sunscreen for Plants, Plant Cell Nutshell Summary. Plantae blog post. https://plantae.org/sunscreen-for-plants/