{tab=Research}Stéphanie Robert next to a microscopePhoto: Erik Abel

The aim of our research is to elucidate the molecular mechanisms underlying the regulation of plant morphogenesis via understanding the process of cell shape acquisition and its associated signaling pathways. We are particularly focusing our studies on auxin transport and signaling, endomembrane trafficking and cell wall function in cell shape acquisition. Most of our work is established on the model plant Arabidopsis thaliana but we also work on spruce, poplar and tomato. Have also a look on our external group homepage:  http://srobertgroup.com.

Plants have acquired the capacity to grow continuously and adapt their architecture in response to endogenous or external signals, leading to essential morphological adjustments. Morphological changes can be mediated by cell shape acquisition, which is a very complex process in plants due to the presence of a cell wall, located outside the cell’s plasma membrane. The cell wall provides mechanical support and protection to the plant cell and thus needs to be fairly rigid, but also flexible to allow elongation and growth, participating in the determination of plant cell shape and architecture.

The phytohormone auxin is an important growth regulator that stimulates cell elongation by inducing wall loosening factors. Importantly, local concentrations of auxin are thought to regulate most aspects of plant development2. The generation of an auxin pattern requires polar auxin transport, which is mediated by the PIN-FORMED (PIN) protein family of auxin efflux facilitators. Auxin action is enhanced by the activity of other classes of growth regulators3, highlighting the importance of small molecules in the control of plant architecture establishment.

Using cell biology, classical genetics and chemical genomics approaches we aim to i) discover new small molecules triggering endomembrane trafficking and signaling events regulating cell expansion, ii) dissect the associated endomembrane trafficking or signaling pathways, iii) understand the link between cell shape determination and cell wall composition.


Collage of four photos showing a 24-well plate with one seedling growing in every well is shown on the left, a microscope image of an Arabidopsis root on the second left, a microscope image of an apical hook on the second right and jigsaw-puzzle-shaped leaf pavement cells on the right. Figure legend: A) Chemical screening in a 24-well plate. The chemical genomics approach uses small molecules for rapid dissection of biological mechanisms and gene networks in ways not feasible with mutation-based approaches (picture: Siamsa Doyle).; B) Confocal microscopy image of Arabidopsis thaliana root- Immunostain labeling of PIN-FORMED 1 (purple) and 2 (blue) (picture: Siamsa Doyle); C) Confocal microscopy image of Arabidopsis thaliana apical hook - Propidium iodide staining (white) highlights the plasma membrane of epidermal cells (picture: Sara Raggi); D) Confocal microscopy image of Arabidopsis thaliana leaf pavement cells - The Arabidopsis line imaged expresses an auxin response marker in the nucleus (blue to green/yellow). The plasma membrane is stained with propidium iodide (red) (picture: Zahra Rahneshan). {tab=Team}
  • Personnel Image
    Doyle, Siamsa Melina
    Staff scientist
    E-mail
    Room: B6-16-45
  • Personnel Image
    Heymans, Adrien
    PostDoc
    E-mail
    Room: KB5C8
  • Personnel Image
    Kumar, Vinod
    PostDoc
    E-mail
    Room: KB5C8
  • Personnel Image
    Lin, Mengzhuo
    PhD Student
    E-mail
    Room: B5-42-45
  • Personnel Image
    Ratnakaram, Hemamshu
    PhD Student
    E-mail
    Room: C4-29-40
  • Personnel Image
    Robert, Stephanie Yvette
    Professor
    E-mail
    Room: B5-34-45
    Website
  • Personnel Image
    Yadav, Sandeep
    PostDoc
    E-mail
    Room: B5-18-45

{tab=CV S. Robert}

Education and academic degrees

  • 2015: Docent, Swedish University of Agricultural Sciences
  • 2005: PhD Plant Science, Paris XI University-Orsay, France
  • 2001: MSc Institut national agronomique Paris Grignon, France

Employments

  • 2021: Professor, Swedish University of Agricultural Sciences
  • 2016: Associate Professor, Swedish University of Agricultural Sciences
  • 2010: Assistant Professor, Swedish University of Agricultural Sciences
  • 2007-2010: Post doc, PSB/VIB University of Ghent, Belgium
  • 2005-2007: Post doc, University of California, Riverside, USA

Special Awards and Honours

  • 2019: The Sven and Ebba-Christina Hagberg foundation award
  • 2012: SLU early career grant
{tab=Publications}
  2024 (2)
Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation. Lorrai, R., Erguvan, Ö., Raggi, S., Jonsson, K., Široká, J., Tarkowská, D., Novák, O., Griffiths, J., Jones, A. M, Verger, S., Robert, S., & Ferrari, S. Plant Physiology, 196(2): 1562–1578. October 2024.
Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation [link]Paper   doi   link   bibtex   abstract  
Guidelines for naming and studying plasma membrane domains in plants. Jaillais, Y., Bayer, E., Bergmann, D. C., Botella, M. A., Boutté, Y., Bozkurt, T. O., Caillaud, M., Germain, V., Grossmann, G., Heilmann, I., Hemsley, P. A., Kirchhelle, C., Martinière, A., Miao, Y., Mongrand, S., Müller, S., Noack, L. C., Oda, Y., Ott, T., Pan, X., Pleskot, R., Potocky, M., Robert, S., Rodriguez, C. S., Simon-Plas, F., Russinova, E., Van Damme, D., Van Norman, J. M., Weijers, D., Yalovsky, S., Yang, Z., Zelazny, E., & Gronnier, J. Nature Plants, 10(8): 1172–1183. August 2024.
Guidelines for naming and studying plasma membrane domains in plants [link]Paper   doi   link   bibtex  
  2023 (2)
Auxin as an architect of the pectin matrix. Jobert, F., Yadav, S., & Robert, S. Journal of Experimental Botany, 74(22): 6933–6949. December 2023.
Auxin as an architect of the pectin matrix [link]Paper   doi   link   bibtex   abstract  
New PEO-IAA-Inspired Anti-Auxins: Synthesis, Biological Activity, and Possible Application in Hemp (Cannabis Sativa L.) Micropropagation. Žukauskaitė, A., Saiz-Fernández, I., Bieleszová, K., Iškauskienė, M., Zhang, C., Smýkalová, I., Dzedulionytė, K., Kubeš, M. F., Sedlářová, M., Pařízková, B., Pavlović, I., Vain, T., Petřík, I., Malinauskienė, V., Šačkus, A., Strnad, M., Robert, S., Napier, R., Novák, O., & Doležal, K. Journal of Plant Growth Regulation. May 2023.
New PEO-IAA-Inspired Anti-Auxins: Synthesis, Biological Activity, and Possible Application in Hemp (Cannabis Sativa L.) Micropropagation [link]Paper   doi   link   bibtex   abstract  
  2022 (2)
Auxin triggers pectin modification during rootlet emergence in white lupin. Jobert, F., Soriano, A., Brottier, L., Casset, C., Divol, F., Safran, J., Lefebvre, V., Pelloux, J., Robert, S., & Péret, B. The Plant Journal, 112(5): 1127–1140. 2022. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.15993
Auxin triggers pectin modification during rootlet emergence in white lupin [link]Paper   doi   link   bibtex   abstract  
Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. Zuch, D. T, Doyle, S. M, Majda, M., Smith, R. S, Robert, S., & Torii, K. U The Plant Cell, 34(1): 209–227. January 2022.
Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination [link]Paper   doi   link   bibtex   abstract  
  2021 (5)
A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. Rigal, A., Doyle, S. M., Ritter, A., Raggi, S., Vain, T., O’Brien, J. A., Goossens, A., Pauwels, L., & Robert, S. Plant Physiology, 187(1): 430–445. September 2021.
A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception [link]Paper   doi   link   bibtex   abstract   14 downloads  
New fluorescent auxin probes visualise tissue‐specific and subcellular distributions of auxin in Arabidopsis. Pařízková, B., Žukauskaitė, A., Vain, T., Grones, P., Raggi, S., Kubeš, M. F., Kieffer, M., Doyle, S. M., Strnad, M., Kepinski, S., Napier, R., Doležal, K., Robert, S., & Novák, O. New Phytologist, 230(2): 535–549. April 2021.
New fluorescent auxin probes visualise tissue‐specific and subcellular distributions of auxin in Arabidopsis [link]Paper   doi   link   bibtex   4 downloads  
Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis. Ötvös, K., Miskolczi, P., Marhavý, P., Cruz-Ramírez, A., Benková, E., Robert, S., & Bakó, L. International Journal of Molecular Sciences, 22(8): 3862. January 2021.
Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis [link]Paper   doi   link   bibtex   abstract   8 downloads  
Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. Liu, S., Jobert, F., Rahneshan, Z., Doyle, S. M., & Robert, S. Annual Review of Plant Biology, 72(1): 525–550. June 2021.
Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells [link]Paper   doi   link   bibtex   abstract   10 downloads  
The chemical compound ‘Heatin’ stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1‐subfamily of nitrilases. Woude, L., Piotrowski, M., Klaasse, G., Paulus, J. K., Krahn, D., Ninck, S., Kaschani, F., Kaiser, M., Novák, O., Ljung, K., Bulder, S., Verk, M., Snoek, B. L., Fiers, M., Martin, N. I., Hoorn, R. A. L., Robert, S., Smeekens, S., & Zanten, M. The Plant Journal,tpj.15250. May 2021.
The chemical compound ‘Heatin’ stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1‐subfamily of nitrilases [link]Paper   doi   link   bibtex  
  2020 (6)
Auxin. Raggi, S., Doyle, S. M., & Robert, S. In The Chemical Biology of Plant Biostimulants, pages 123–153. John Wiley & Sons, Ltd, 2020. Section: 5 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119357254.ch5
Auxin [link]Paper   doi   link   bibtex   abstract  
Auxin: at the crossroads between chemistry and biology. Raggi, S., Doyle, S. M., & Robert, S. In The Chemical Biology of Plant Biostimulants, pages 123–153. John Wiley & Sons, Ltd, 2020.
Auxin: at the crossroads between chemistry and biology [link]Paper   link   bibtex   abstract  
Cell-surface receptors enable perception of extracellular cytokinins. Antoniadi, I., Novák, O., Gelová, Z., Johnson, A., Plíhal, O., Simerský, R., Mik, V., Vain, T., Mateo-Bonmatí, E., Karady, M., Pernisová, M., Plačková, L., Opassathian, K., Hejátko, J., Robert, S., Friml, J., Doležal, K., Ljung, K., & Turnbull, C. Nature Communications, 11(1): 4284. December 2020.
Cell-surface receptors enable perception of extracellular cytokinins [link]Paper   doi   link   bibtex   1 download  
Fluctuating auxin response gradients determine pavement cell-shape acquisition. Grones, P., Majda, M., Doyle, S. M., Van Damme, D., & Robert, S. Proceedings of the National Academy of Sciences, 117(27): 16027–16034. July 2020.
Fluctuating auxin response gradients determine pavement cell-shape acquisition [link]Paper   doi   link   bibtex   abstract   3 downloads  
Polar expedition: mechanisms for protein polar localization. Raggi, S., Demes, E., Liu, S., Verger, S., & Robert, S. Current Opinion in Plant Biology, 53: 134–140. February 2020.
Polar expedition: mechanisms for protein polar localization [link]Paper   doi   link   bibtex   4 downloads  
The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L. D., Stes, E., Cho, H., Larrieu, A., Xuan, W., Goodall, B., van de Cotte, B., Waite, J. M., Rigal, A., Ramans Harborough, S., Persiau, G., Vanneste, S., Kirschner, G. K., Vandermarliere, E., Martens, L., Stahl, Y., Audenaert, D., Friml, J., Felix, G., Simon, R., Bennett, M. J., Bishopp, A., De Jaeger, G., Ljung, K., Kepinski, S., Robert, S., Nemhauser, J., Hwang, I., Gevaert, K., Beeckman, T., & De Smet, I. Molecular & Cellular Proteomics, 19(8): 1248–1262. August 2020.
The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis [link]Paper   doi   link   bibtex  
  2019 (6)
A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis. Doyle, S. M., Rigal, A., Grones, P., Karady, M., Barange, D. K., Majda, M., Pařízková, B., Karampelias, M., Zwiewka, M., Pěnčík, A., Almqvist, F., Ljung, K., Novák, O., & Robert, S. New Phytologist, 223(3): 1420–1432. August 2019.
A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis [link]Paper   doi   link   bibtex  
Chemical Screening Pipeline for Identification of Specific Plant Autophagy Modulators. Dauphinee, A. N., Cardoso, C., Dalman, K., Ohlsson, J. A., Fick, S. B., Robert, S., Hicks, G. R., Bozhkov, P. V., & Minina, E. A. Plant Physiology, 181(3): 855–866. November 2019.
Chemical Screening Pipeline for Identification of Specific Plant Autophagy Modulators [link]Paper   doi   link   bibtex  
FORCE-ing the shape. Grones, P., Raggi, S., & Robert, S. Current Opinion in Plant Biology, 52: 1–6. December 2019.
FORCE-ing the shape [link]Paper   doi   link   bibtex  
Mechanical Asymmetry of the Cell Wall Predicts Changes in Pavement Cell Geometry. Majda, M., Krupinski, P., Jönsson, H., Hamant, O., & Robert, S. Developmental Cell, 50(1): 9–10. July 2019.
Mechanical Asymmetry of the Cell Wall Predicts Changes in Pavement Cell Geometry [link]Paper   doi   link   bibtex   2 downloads  
New fluorescently labeled auxins exhibit promising anti-auxin activity. Bieleszová, K., Pařízková, B., Kubeš, M., Husičková, A., Kubala, M., Ma, Q., Sedlářová, M., Robert, S., Doležal, K., Strnad, M., Novák, O., & Žukauskaitė, A. New Biotechnology, 48: 44–52. January 2019.
New fluorescently labeled auxins exhibit promising anti-auxin activity [link]Paper   doi   link   bibtex  
Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Vain, T., Raggi, S., Ferro, N., Barange, D. K., Kieffer, M., Ma, Q., Doyle, S. M., Thelander, M., Pařízková, B., Novák, O., Ismail, A., Enquist, P., Rigal, A., Łangowska, M., Ramans Harborough, S., Zhang, Y., Ljung, K., Callis, J., Almqvist, F., Kepinski, S., Estelle, M., Pauwels, L., & Robert, S. Proceedings of the National Academy of Sciences, 116(13): 6463–6472. March 2019.
Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development [link]Paper   doi   link   bibtex   abstract   2 downloads  
  2018 (4)
Auxin signaling: a big question to be addressed by small molecules. Ma, Q., Grones, P., & Robert, S. Journal of Experimental Botany, 69(2): 313–328. January 2018.
Auxin signaling: a big question to be addressed by small molecules [link]Paper   doi   link   bibtex  
The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes. Kania, U., Nodzyński, T., Lu, Q., Hicks, G. R., Nerinckx, W., Mishev, K., Peurois, F., Cherfils, J., De Rycke, R., Grones, P., Robert, S., Russinova, E., & Friml, J. The Plant Cell, 30(10): 2553–2572. October 2018.
The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes [link]Paper   doi   link   bibtex  
The Role of Auxin in Cell Wall Expansion. Majda, M., & Robert, S. International Journal of Molecular Sciences, 19(4): 951. March 2018.
The Role of Auxin in Cell Wall Expansion [link]Paper   doi   link   bibtex  
Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation. Liu, Q., Vain, T., Viotti, C., Doyle, S. M., Tarkowská, D., Novák, O., Zipfel, C., Sitbon, F., Robert, S., & Hofius, D. Molecular Plant, 11(4): 553–567. April 2018.
Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation [link]Paper   doi   link   bibtex   abstract  
  2017 (3)
Auxin 2016: a burst of auxin in the warm south of China. Vernoux, T., & Robert, S. Development, 144(4): 533–540. February 2017.
Auxin 2016: a burst of auxin in the warm south of China [link]Paper   doi   link   bibtex   abstract  
Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells. Majda, M., Grones, P., Sintorn, I., Vain, T., Milani, P., Krupinski, P., Zagórska-Marek, B., Viotti, C., Jönsson, H., Mellerowicz, E. J., Hamant, O., & Robert, S. Developmental Cell, 43(3): 290–304.e4. November 2017.
Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells [link]Paper   doi   link   bibtex  
Regulating plant physiology with organic electronics. Poxson, D. J., Karady, M., Gabrielsson, R., Alkattan, A. Y., Gustavsson, A., Doyle, S. M., Robert, S., Ljung, K., Grebe, M., Simon, D. T., & Berggren, M. Proceedings of the National Academy of Sciences, 114(18): 4597–4602. May 2017.
Regulating plant physiology with organic electronics [link]Paper   doi   link   bibtex   abstract  
  2016 (3)
2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis. Eyer, L., Vain, T., Pařízková, B., Oklestkova, J., Barbez, E., Kozubíková, H., Pospíšil, T., Wierzbicka, R., Kleine-Vehn, J., Fránek, M., Strnad, M., Robert, S., & Novak, O. PLOS ONE, 11(7): e0159269. July 2016.
2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis [link]Paper   doi   link   bibtex  
Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. Jiskrová, E., Novák, O., Pospíšilová, H., Holubová, K., Karády, M., Galuszka, P., Robert, S., & Frébort, I. New Biotechnology, 33(5): 735–742. September 2016.
Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots [link]Paper   doi   link   bibtex  
Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Dejonghe, W., Kuenen, S., Mylle, E., Vasileva, M., Keech, O., Viotti, C., Swerts, J., Fendrych, M., Ortiz-Morea, F. A., Mishev, K., Delang, S., Scholl, S., Zarza, X., Heilmann, M., Kourelis, J., Kasprowicz, J., Nguyen, L. S. L., Drozdzecki, A., Van Houtte, I., Szatmári, A., Majda, M., Baisa, G., Bednarek, S. Y., Robert, S., Audenaert, D., Testerink, C., Munnik, T., Van Damme, D., Heilmann, I., Schumacher, K., Winne, J., Friml, J., Verstreken, P., & Russinova, E. Nature Communications, 7(1): 11710. September 2016.
Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification [link]Paper   doi   link   bibtex  
  2015 (4)
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Doyle, S. M., Haeger, A., Vain, T., Rigal, A., Viotti, C., Langowska, M., Ma, Q., Friml, J., Raikhel, N. V., Hicks, G. R., & Robert, S. Proc Natl Acad Sci U S A, 112(7): E806–15. February 2015. Edition: 2015/02/04
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Live Cell Imaging of FM4-64, a Tool for Tracing the Endocytic Pathways in Arabidopsis Root Cells. Rigal, A., Doyle, S. M., & Robert, S. In Estevez, J. M., editor(s), Plant Cell Expansion, volume 1242, pages 93–103. Springer New York, New York, NY, 2015. Series Title: Methods in Molecular Biology
Live Cell Imaging of FM4-64, a Tool for Tracing the Endocytic Pathways in Arabidopsis Root Cells [link]Paper   doi   link   bibtex  
Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana. Zwiewka, M., Nodzynski, T., Robert, S., Vanneste, S., & Friml, J. Mol Plant, 8(8): 1175–87. August 2015. Edition: 2015/03/22
Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Small molecules unravel complex interplay between auxin biology and endomembrane trafficking. Doyle, S. M., Vain, T., & Robert, S. J Exp Bot, 66(16): 4971–82. August 2015. Edition: 2015/04/26
Small molecules unravel complex interplay between auxin biology and endomembrane trafficking [link]Paper   doi   link   bibtex   abstract  
  2014 (5)
Auxin biology revealed by small molecules. Ma, Q., & Robert, S. Physiologia Plantarum, 151(1): 25–42. May 2014.
Auxin biology revealed by small molecules [link]Paper   doi   link   bibtex  
The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex. Vain, T., Crowell, E. F., Timpano, H., Biot, E., Desprez, T., Mansoori, N., Trindade, L. M., Pagant, S., Robert, S., Höfte, H., Gonneau, M., & Vernhettes, S. Plant Physiology, 165(4): 1521–1532. August 2014.
The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex [link]Paper   doi   link   bibtex   abstract  
Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana. Paudyal, R., Jamaluddin, A., Warren, J., Doyle, S., Robert, S., Warriner, S., & Baker, A. Biochemical Journal, 460(2): 177–185. June 2014.
Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Unraveling plant hormone signaling through the use of small molecules. Rigal, A., Ma, Q., & Robert, S. Frontiers in Plant Science, 5. 2014. Publisher: Frontiers
Unraveling plant hormone signaling through the use of small molecules [link]Paper   doi   link   bibtex   abstract  
Using a Reverse Genetics Approach to Investigate Small-Molecule Activity. Doyle, S. M., & Robert, S. In Hicks, G. R, & Robert, S., editor(s), Plant Chemical Genomics, volume 1056, pages 51–62. Humana Press, Totowa, NJ, 2014. Series Title: Methods in Molecular Biology
Using a Reverse Genetics Approach to Investigate Small-Molecule Activity [link]Paper   doi   link   bibtex  
  2013 (8)
ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. Le Hir, R., Sorin, C., Chakraborti, D., Moritz, T., Schaller, H., Tellier, F., Robert, S., Morin, H., Bakó, L., & Bellini, C. The Plant Journal, 76(5): 811–824. December 2013.
ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis [link]Paper   doi   link   bibtex  
Auxin: simply complicated. Sauer, M., Robert, S., & Kleine-Vehn, J. Journal of Experimental Botany, 64(9): 2565–2577. June 2013.
Auxin: simply complicated [link]Paper   doi   link   bibtex  
Cell Polarity and Patterning by PIN Trafficking through Early Endosomal Compartments in Arabidopsis thaliana. Tanaka, H., Kitakura, S., Rakusová, H., Uemura, T., Feraru, M. I., De Rycke, R., Robert, S., Kakimoto, T., & Friml, J. PLoS Genetics, 9(5): e1003540. May 2013.
Cell Polarity and Patterning by PIN Trafficking through Early Endosomal Compartments in Arabidopsis thaliana [link]Paper   doi   link   bibtex  
Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. Simon, S., Kubeš, M., Baster, P., Robert, S., Dobrev, P. I., Friml, J., Petrášek, J., & Zažímalová, E. New Phytologist, 200(4): 1034–1048. December 2013.
Defining the selectivity of processes along the auxin response chain: a study using auxin analogues [link]Paper   doi   link   bibtex  
ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Boutte, Y., Jonsson, K., McFarlane, H. E., Johnson, E., Gendre, D., Swarup, R., Friml, J., Samuels, L., Robert, S., & Bhalerao, R. P. Proceedings of the National Academy of Sciences, 110(40): 16259–16264. October 2013.
ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation [link]Paper   doi   link   bibtex  
ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 Is Essential for Polar Auxin Transport in Arabidopsis. Yu, H., Karampelias, M., Robert, S., Peer, W. A., Swarup, R., Ye, S., Ge, L., Cohen, J., Murphy, A., Friml, J., & Estelle, M. Plant Physiology, 162(2): 965–976. May 2013.
ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 Is Essential for Polar Auxin Transport in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
The Caspase-Related Protease Separase (EXTRA SPINDLE POLES) Regulates Cell Polarity and Cytokinesis in Arabidopsis[C][W]. Moschou, P. N., Smertenko, A. P., Minina, E. A., Fukada, K., Savenkov, E. I., Robert, S., Hussey, P. J., & Bozhkov, P. V. The Plant Cell, 25(6): 2171–2186. June 2013.
The Caspase-Related Protease Separase (EXTRA SPINDLE POLES) Regulates Cell Polarity and Cytokinesis in Arabidopsis[C][W] [link]Paper   doi   link   bibtex   abstract  
The Use of Chemical Biology to Study Plant Cellular Processes: Subcellular Trafficking. Haeger, A., Łangowska, M., & Robert, S. In Audenaert, D., & Overvoorde, P., editor(s), Plant Chemical Biology, pages 218–231. John Wiley & Sons, Inc, Hoboken, NJ, November 2013.
The Use of Chemical Biology to Study Plant Cellular Processes: Subcellular Trafficking [link]Paper   doi   link   bibtex  
  2012 (2)
ABP1 and ROP6 GTPase Signaling Regulate Clathrin-Mediated Endocytosis in Arabidopsis Roots. Chen, X., Naramoto, S., Robert, S., Tejos, R., Löfke, C., Lin, D., Yang, Z., & Friml, J. Current Biology, 22(14): 1326–1332. July 2012.
ABP1 and ROP6 GTPase Signaling Regulate Clathrin-Mediated Endocytosis in Arabidopsis Roots [link]Paper   doi   link   bibtex  
SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. Baster, P., Robert, S., Kleine-Vehn, J., Vanneste, S., Kania, U., Grunewald, W., De Rybel, B., Beeckman, T., & Friml, J. The EMBO Journal, 32(2): 260–274. December 2012.
SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism [link]Paper   doi   link   bibtex  
  2011 (4)
Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis. Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., & Friml, J. The Plant Cell, 23(5): 1920–1931. May 2011.
Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in <i>Arabidopsis</i> [link]Paper   doi   link   bibtex   abstract  
Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Drakakaki, G., Robert, S., Szatmari, A., Brown, M. Q., Nagawa, S., Damme, D. V., Leonard, M., Yang, Z., Girke, T., Schmid, S. L., Russinova, E., Friml, J., Raikhel, N. V., & Hicks, G. R. Proceedings of the National Academy of Sciences, 108(43): 17850–17855. October 2011. Publisher: National Academy of Sciences Section: Biological Sciences
Clusters of bioactive compounds target dynamic endomembrane networks in vivo [link]Paper   doi   link   bibtex   abstract   1 download  
Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Barberon, M., Zelazny, E., Robert, S., Conéjéro, G., Curie, C., Friml, J., & Vert, G. Proceedings of the National Academy of Sciences, 108(32): E450–E458. August 2011.
Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants [link]Paper   doi   link   bibtex  
Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Kleine‐Vehn, J., Wabnik, K., Martinière, A., Łangowski, Ł., Willig, K., Naramoto, S., Leitner, J., Tanaka, H., Jakobs, S., Robert, S., Luschnig, C., Govaerts, W., W Hell, S., Runions, J., & Friml, J. Molecular Systems Biology, 7(1): 540. January 2011.
Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane [link]Paper   doi   link   bibtex  
  2010 (3)
ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Čovanová, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S. Y., Jones, A. M., Luschnig, C., Aniento, F., Zažímalová, E., & Friml, J. Cell, 143(1): 111–121. October 2010.
doi   link   bibtex   abstract  
ADP-ribosylation factor machinery mediates endocytosis in plant cells. Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., Van Montagu, M. C. E., Fukuda, H., & Friml, J. Proceedings of the National Academy of Sciences, 107(50): 21890–21895. December 2010.
ADP-ribosylation factor machinery mediates endocytosis in plant cells [link]Paper   doi   link   bibtex  
Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 Is Required for Polar Auxin Transport. Ge, L., Peer, W., Robert, S., Swarup, R., Ye, S., Prigge, M., Cohen, J., Friml, J., Murphy, A., Tang, D., & Estelle, M. The Plant Cell, 22(6): 1749–1761. June 2010.
Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 Is Required for Polar Auxin Transport [link]Paper   doi   link   bibtex   abstract  
  2009 (2)
Chemical dissection of endosomal pathways. Drakakaki, G., Robert, S., Raikhel, N. V, & Hicks, G. R Plant Signaling & Behavior, 4(1): 57–62. January 2009.
Chemical dissection of endosomal pathways [link]Paper   link   bibtex   abstract  
Powerful partners: Arabidopsis and chemical genomics. Robert, S., Raikhel, N. V., & Hicks, G. R. The Arabidopsis Book, 7: e0109. 2009.
doi   link   bibtex   abstract  
  2008 (1)
Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Robert, S., Chary, S. N., Drakakaki, G., Li, S., Yang, Z., Raikhel, N. V., & Hicks, G. R. Proceedings of the National Academy of Sciences, 105(24): 8464–8469. June 2008. Publisher: National Academy of Sciences Section: Biological Sciences
Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1 [link]Paper   doi   link   bibtex   abstract  
  2007 (2)
Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Sanmartín, M., Ordóñez, A., Sohn, E. J., Robert, S., Sánchez-Serrano, J. J., Surpin, M. A., Raikhel, N. V., & Rojo, E. Proceedings of the National Academy of Sciences of the United States of America, 104(9): 3645–3650. February 2007.
doi   link   bibtex   abstract  
Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplasts. Robert, S., Zouhar, J., Carter, C., & Raikhel, N. Nature Protocols, 2(2): 259–262. February 2007. Number: 2 Publisher: Nature Publishing Group
Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplasts [link]Paper   doi   link   bibtex   abstract  
  2006 (1)
Arabidopsis Reversibly Glycosylated Polypeptides 1 and 2 Are Essential for Pollen Development. Drakakaki, G., Zabotina, O., Delgado, I., Robert, S., Keegstra, K., & Raikhel, N. Plant Physiology, 142(4): 1480–1492. December 2006.
Arabidopsis Reversibly Glycosylated Polypeptides 1 and 2 Are Essential for Pollen Development [link]Paper   doi   link   bibtex   abstract  
  2005 (1)
An Arabidopsis Endo-1,4-β-d-Glucanase Involved in Cellulose Synthesis Undergoes Regulated Intracellular Cycling. Robert, S., Bichet, A., Grandjean, O., Kierzkowski, D., Satiat-Jeunemaître, B., Pelletier, S., Hauser, M., Höfte, H., & Vernhettes, S. The Plant Cell, 17(12): 3378–3389. December 2005.
An Arabidopsis Endo-1,4-β-d-Glucanase Involved in Cellulose Synthesis Undergoes Regulated Intracellular Cycling [link]Paper   doi   link   bibtex   abstract  
  2004 (1)
The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Robert, S., Mouille, G., & Höfte, H. Cellulose, 11(3): 351–364. September 2004.
The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants [link]Paper   doi   link   bibtex   abstract