{tab=Research} Portrait photo of Petra Marhava in front of a bushPhoto: Peter Marhavý

Temperatures below or above the physiological optimum for plant growth induce temperature stress, which can cause detrimental and irreversible damage to plant growth and development. While most of the studies to date have focused on big-picture elements of plant responses to climate change, our research will provide insights into the molecular and cellular responses, to improve our mechanistic understanding of plant acclimation to heat and cold stress.

Even though studies on the underlying mechanisms of plant acclimation to high/low temperature are making steady progress, many questions remain unanswered. In particular, the role of the plant root system during acclimation to temperature stress has received little attention, though temperature stress at the root level can strongly affect the function of the whole plant and decrease crop productivity. In addition, despite knowing that plants show organ-specific transcriptome responses to temperature stress, we still tend to generalize findings based on shoot tissues. In my group, we combine state-of-the-art techniques for exploring root tissue to understand how roots sense and modulate their growth in response to fluctuating temperatures.


{tab=Group Members}
  • Personnel Image
    Basheer, Jasim
    PostDoc
    E-mail
    Room: C4-29-40
  • Personnel Image
    Chakraborty, Sonhita
    PostDoc
    E-mail
    Room: B5-42-45
  • Personnel Image
    Cheng, Ling
    PostDoc
    E-mail
    Room: B5-52-45
  • Personnel Image
    From Heikkilä, Elliot
    Project Student
    E-mail
    Room: B3-24-51
  • Personnel Image
    Kjellström, Jarl
    PhD Student
    E-mail
    Room: B5-20-45
  • Personnel Image
    Leclair, Romane
    Exchange student
    E-mail
    Room: B3-24-51
  • Personnel Image
    Marhava, Petra
    Assistant Professor
    E-mail
    Room: KB5C7
    Website
  • Personnel Image
    Sharma, Manvi
    PostDoc
    E-mail
    Room: B5-18-45

{tab=CV P. Marhava}
  • 2022 – to date: Independent Researcher
Umeå Plant Science Center (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
  • 2020 – 2022: Researcher
Umeå Plant Science Center (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
  • 2015 – 2020: Postdoctoral researcher
University of Lausanne, Department of Molecular Biology of Plants (DBMV), Lausanne, Switzerland
Supervisor: Prof. Christian S. Hardtke
  • 2011 – 2015: Doctor of Philosophy (Ph.D.)
Institute of Science and Technology in Austria (IST Austria), Austria
VIB Department of Plant Systems Biology, Ghent University, Belgium
Supervisor: Prof. Jiří Friml
{tab=Publications}
  2024 (1)
Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Hoermayer, L., Montesinos, J. C., Trozzi, N., Spona, L., Yoshida, S., Marhava, P., Caballero-Mancebo, S., Benková, E., Heisenberg, C., Dagdas, Y., Majda, M., & Friml, J. Developmental Cell. April 2024.
Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization [link]Paper   doi   link   bibtex   abstract  
  2023 (1)
Regulation of PIN polarity in response to abiotic stress. Sharma, M., & Marhava, P. Current Opinion in Plant Biology, 76: 102445. December 2023.
Regulation of PIN polarity in response to abiotic stress [link]Paper   doi   link   bibtex   abstract  
  2022 (1)
Recent developments in the understanding of PIN polarity. Marhava, P. New Phytologist, 233(2): 624–630. January 2022.
Recent developments in the understanding of PIN polarity [link]Paper   doi   link   bibtex   abstract   60 downloads  
  2021 (1)
Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins. Koh, S. W H, Marhava, P., Rana, S., Graf, A., Moret, B., Bassukas, A. E L, Zourelidou, M., Kolb, M., Hammes, U. Z, Schwechheimer, C., & Hardtke, C. S The Plant Cell, 33(6): 1945–1960. June 2021.
Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins [link]Paper   doi   link   bibtex   abstract  
  2020 (5)
Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters[OPEN]. Zhang, X., Adamowski, M., Marhava, P., Tan, S., Zhang, Y., Rodriguez, L., Zwiewka, M., Pukyšová, V., Sánchez, A. S., Raxwal, V. K., Hardtke, C. S., Nodzyński, T., & Friml, J. The Plant Cell, 32(5): 1644–1664. May 2020.
Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters[OPEN] [link]Paper   doi   link   bibtex   abstract  
Local and Systemic Effects of Brassinosteroid Perception in Developing Phloem. Graeff, M., Rana, S., Marhava, P., Moret, B., & Hardtke, C. S. Current Biology, 30(9): 1626–1638.e3. May 2020.
Local and Systemic Effects of Brassinosteroid Perception in Developing Phloem [link]Paper   doi   link   bibtex   abstract  
Local auxin competition explains fragmented differentiation patterns. Moret, B., Marhava, P., Aliaga Fandino, A. C., Hardtke, C. S., & ten Tusscher, K. H. W. Nature Communications, 11(1): 2965. June 2020. Number: 1 Publisher: Nature Publishing Group
Local auxin competition explains fragmented differentiation patterns [link]Paper   doi   link   bibtex   abstract  
Plasma Membrane Domain Patterning and Self-Reinforcing Polarity in Arabidopsis. Marhava, P., Aliaga Fandino, A. C., Koh, S. W. H., Jelínková, A., Kolb, M., Janacek, D. P., Breda, A. S., Cattaneo, P., Hammes, U. Z., Petrášek, J., & Hardtke, C. S. Developmental Cell, 52(2): 223–235.e5. January 2020.
Plasma Membrane Domain Patterning and Self-Reinforcing Polarity in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Hoermayer, L., Montesinos, J. C., Marhava, P., Benková, E., Yoshida, S., & Friml, J. Proceedings of the National Academy of Sciences, 117(26): 15322–15331. June 2020. Publisher: Proceedings of the National Academy of Sciences
Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots [link]Paper   doi   link   bibtex  
  2019 (2)
Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth. Cattaneo, P., Graeff, M., Marhava, P., & Hardtke, C. S. Development, 146(23): dev183905. December 2019.
Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth [link]Paper   doi   link   bibtex   abstract  
Re-activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing. Marhava, P., Hoermayer, L., Yoshida, S., Marhavý, P., Benková, E., & Friml, J. Cell, 177(4): 957–969.e13. May 2019.
Re-activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing [link]Paper   doi   link   bibtex   4 downloads  
  2018 (1)
A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Marhava, P., Bassukas, A. E. L., Zourelidou, M., Kolb, M., Moret, B., Fastner, A., Schulze, W. X., Cattaneo, P., Hammes, U. Z., Schwechheimer, C., & Hardtke, C. S. Nature, 558(7709): 297–300. June 2018. Number: 7709 Publisher: Nature Publishing Group
A molecular rheostat adjusts auxin flux to promote root protophloem differentiation [link]Paper   doi   link   bibtex   abstract  
  2016 (1)
Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Marhavý, P., Montesinos, J. C., Abuzeineh, A., Van Damme, D., Vermeer, J. E., Duclercq, J., Rakusová, H., Nováková, P., Friml, J., Geldner, N., & Benková, E. Genes & Development, 30(4): 471–483. February 2016.
Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation [link]Paper   doi   link   bibtex   7 downloads  
  2015 (1)
Real-time Analysis of Lateral Root Organogenesis in Arabidopsis. Marhava, P., & Benkova, E. BIO-PROTOCOL, 5(8). 2015.
Real-time Analysis of Lateral Root Organogenesis in Arabidopsis [link]Paper   doi   link   bibtex  
  2014 (1)
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Nováková, P., Hirsch, S., Feraru, E., Tejos, R., van Wijk, R., Viaene, T., Heilmann, M., Lerche, J., De Rycke, R., Feraru, M. I., Grones, P., Van Montagu, M., Heilmann, I., Munnik, T., & Friml, J. Proceedings of the National Academy of Sciences, 111(7): 2818–2823. February 2014. Publisher: Proceedings of the National Academy of Sciences
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis [link]Paper   doi   link   bibtex