{tab=Research}

Portrait photo of Stephan Wenkel We are interested in understanding how plants use small proteins to dynamically adjust growth and development in response to environmental changes.

There is growing evidence that proteomes are more complex than previously anticipated. For instance, until recently, genes coding for proteins with fewer than 100 amino acids were often labeled as artefacts. As a result, many such small open reading frames were excluded in genome annotations. Moreover, in addition to these single, individual, open reading frames, small proteins can also arise through processes such as alternative splicing or alternative use of transcription start sites. Thus, one gene can code for more than one protein. These and other processes result in a much larger number of protein species in a given cell compared to the number of protein-coding genes in the genome.

Figure showing a circle with a blue and green coloured outer circel and lines connecting different parts of the outer circle with each otherFigure 1: Circos plot of individual microProtein candidates. Links indicate conservation between species based on OrthoFinder. Red, in all 11 species; dark blue, exclusively in all five metazoans; light blue, only in metazoans; dark green, exclusively in all six plants; light green, only in plants. Has: Homo sapiens; Mmu: Mus musculus; Dre: Danio rerio; Dme: Drosophila melanogaster; Cel: Caenorhabditis elegans; Ath: Arabidopsis thaliana; Sly: Solanum lycopersicum; Stu: Solanum tuberosum; Sbi: Sorghum bicolor; Osa: Oryza sativa; Zma: Zea mays. From: Straub and Wenkel, Genome Biol. Evol. 9(3):777–789, 2017.

In our research, we use both protein-centric approaches (starting with the identification and characterization of specific small proteins, often microProteins) and process-oriented approaches, where we try to understand how plants dynamically change their developmental decisions in response to environmental changes. To identify small proteins, such as microProteins in any sequenced genome, we developed miPFinder that can classify small proteins as microProteins (Fig. 1, Straub and Wenkel, 2017). Biological processes we study involve the promotion of growth in response to shading or the induction of flowering in response to day length and temperature. One of the things we have been able to show is that small B-box microProteins can strongly influence flowering (Fig.2 and Graeff et al., 2016).

Five Arabidopsis plants in front of a black background, only the first one has inflorescencesFigure 2: Transgenic plants with elevated microProtein levels are late flowering under inductive long day conditions. Image of representative late flowering mutants co and ft and transgenic plants overexpressing two microProteins (35S::miP1a and 35S::miP1b) compared to a Col-0 wild type plant of the same age. From: Graeff et al., PLOS Genetics | DOI:10.1371/journal.pgen.1005959; 2016.

The next steps

Owing to their small size and the predictability of protein interactions, microProteins are suitable for the regulation of biotechnological processes. With the help of new genome engineering tools, we are currently exploring the possibilities of generating microProteins de novo to control developmental pathways at will.

{tab=Team}
  • Personnel Image
    Alanga, Naveen Shankar
    PostDoc
    E-mail
    Room: B4-34-45
  • Personnel Image
    Chiurazzi, Maurizio Junior
    Visiting Guest
    E-mail
    Room:
  • Personnel Image
    Edwards, Ashleigh
    Visiting Guest
    E-mail
    Room:
  • Personnel Image
    Jurca, Manuela Elena
    Staff scientist
    E-mail
    Room: B4-34-45
  • Personnel Image
    Majee, Adity
    PostDoc
    E-mail
    Room: B4-38-45
  • Personnel Image
    Niu, Huanying
    PhD Student
    E-mail
    Room: B4-34-45
  • Personnel Image
    Pennisi, Federica
    Visiting Guest
    E-mail
    Room:
  • Personnel Image
    Petri, Louise
    Visiting Guest
    E-mail
    Room:
  • Personnel Image
    Stollenwerk, Jannis
    Visiting Guest
    E-mail
    Room: B3-24-51
  • Personnel Image
    Ter Waarbeek, Casper
    PhD Student
    E-mail
    Room: B4-38-45
  • Personnel Image
    Van Humbeeck, Anne
    PhD Student
    E-mail
    Room: B4-36-45
  • Personnel Image
    Vittozzi, Ylenia
    Visiting Guest
    E-mail
    Room: B4-36-45
  • Personnel Image
    Wenkel, Stephan
    Professor
    E-mail
    Room: B4-42-45
    Website

{tab=CV S. Wenkel}

Education and academic degrees

  • 2006: Dr. rer. nat. (genetics), University of Cologne/Max Planck Institute for Plant Breeding Research, Germany
  • 2003: Diploma (M.Sc.) in Biology, University of Würzburg, Germany

Employments

  • 02/2023: Professor, Umeå University, Sweden
  • 2014-23: Associate professor, University of Copenhagen, Denmark
  • 2009-14: Group Leader, Center for Plant Molecular Biology, University of Tübingen, Germany
  • 2006-09: Postdoctoral Fellow, Carnegie Institution for Science, Stanford, USA
  • 2003-06: PhD student, Max Planck Institute for Plant Breeding Research, Cologne, Germany

Prizes, Awards, Honors

  • 2013: ERC Starting Grant
  • 2020: Novo Nordisk Ascending Investigator
{tab=Publications}
  2024 (2)
ABI5 binding proteins: key players in coordinating plant growth and development. Vittozzi, Y., Krüger, T., Majee, A., Née, G., & Wenkel, S. Trends in Plant Science. April 2024. Publisher: Elsevier
ABI5 binding proteins: key players in coordinating plant growth and development [link]Paper   doi   link   bibtex  
‘Seeing’ the electromagnetic spectrum: spotlight on the cryptochrome photocycle. Aguida, B., Babo, J., Baouz, S., Jourdan, N., Procopio, M., El-Esawi, M. A., Engle, D., Mills, S., Wenkel, S., Huck, A., Berg-Sørensen, K., Kampranis, S. C., Link, J., & Ahmad, M. Frontiers in Plant Science, 15. March 2024.
‘Seeing’ the electromagnetic spectrum: spotlight on the cryptochrome photocycle [link]Paper   doi   link   bibtex   abstract  
  2022 (6)
Context-specific functions of transcription factors controlling plant development: From leaves to flowers. Heisler, M. G., Jönsson, H., Wenkel, S., & Kaufmann, K. Current Opinion in Plant Biology, 69: 102262. October 2022.
Context-specific functions of transcription factors controlling plant development: From leaves to flowers [link]Paper   doi   link   bibtex   abstract  
Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations. Chiurazzi, M. J., Nørrevang, A. F., García, P., Cerdán, P. D., Palmgren, M., & Wenkel, S. Journal of Integrative Plant Biology, 64(2): 205–214. 2022.
Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations [link]Paper   doi   link   bibtex   abstract  
FIONA1-mediated methylation of the 3’UTR of FLC affects FLC transcript levels and flowering in Arabidopsis. Sun, B., Bhati, K. K., Song, P., Edwards, A., Petri, L., Kruusvee, V., Blaakmeer, A., Dolde, U., Rodrigues, V., Straub, D., Yang, J., Jia, G., & Wenkel, S. PLOS Genetics, 18(9): e1010386. September 2022.
FIONA1-mediated methylation of the 3’UTR of FLC affects FLC transcript levels and flowering in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Microproteins — lost in translation. Kruusvee, V., & Wenkel, S. Nature Chemical Biology, 18(6): 581–582. June 2022.
Microproteins — lost in translation [link]Paper   doi   link   bibtex   abstract  
Stop CRYing! Inhibition of cryptochrome function by small proteins. Kruusvee, V., Toft, A. M., Aguida, B., Ahmad, M., & Wenkel, S. Biochemical Society Transactions, 50(2): 773–782. March 2022.
Stop CRYing! Inhibition of cryptochrome function by small proteins [link]Paper   doi   link   bibtex   abstract  
The genetic interaction of REVOLUTA and WRKY53 links plant development, senescence, and immune responses. Bresson, J., Doll, J., Vasseur, F., Stahl, M., Roepenack-Lahaye, E. v., Kilian, J., Stadelhofer, B., Kremer, J. M., Kolb, D., Wenkel, S., & Zentgraf, U. PLOS ONE, 17(3): e0254741. March 2022.
The genetic interaction of REVOLUTA and WRKY53 links plant development, senescence, and immune responses [link]Paper   doi   link   bibtex   abstract  
  2021 (2)
A microProtein repressor complex in the shoot meristem controls the transition to flowering. Rodrigues, V. L., Dolde, U., Sun, B., Blaakmeer, A., Straub, D., Eguen, T., Botterweg-Paredes, E., Hong, S., Graeff, M., Li, M., Gendron, J. M., & Wenkel, S. Plant Physiology, 187(1): 187–202. September 2021.
A microProtein repressor complex in the shoot meristem controls the transition to flowering [link]Paper   doi   link   bibtex   abstract  
MicroProteins: Expanding functions and novel modes of regulation. Bhati, K. K., Dolde, U., & Wenkel, S. Molecular Plant, 14(5): 705–707. May 2021.
MicroProteins: Expanding functions and novel modes of regulation [link]Paper   doi   link   bibtex  
  2020 (7)
Control of flowering in rice through synthetic microProteins. Eguen, T., Ariza, J. G., Brambilla, V., Sun, B., Bhati, K. K., Fornara, F., & Wenkel, S. Journal of Integrative Plant Biology, 62(6): 730–736. 2020.
Control of flowering in rice through synthetic microProteins [link]Paper   doi   link   bibtex   abstract  
Global Analysis of Cereal microProteins Suggests Diverse Roles in Crop Development and Environmental Adaptation. Bhati, K. K., Kruusvee, V., Straub, D., Chandran, A. K. N., Jung, K., & Wenkel, S. G3 Genes\textbarGenomes\textbarGenetics, 10(10): 3709–3717. October 2020.
Global Analysis of Cereal microProteins Suggests Diverse Roles in Crop Development and Environmental Adaptation [link]Paper   doi   link   bibtex   abstract  
Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling. Hong, S., Sun, B., Straub, D., Blaakmeer, A., Mineri, L., Koch, J., Brinch-Pedersen, H., Holme, I. B., Burow, M., Lyngs Jørgensen, H. J., Albà, M. M., & Wenkel, S. Proceedings of the National Academy of Sciences, 117(42): 26197–26205. October 2020.
Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling [link]Paper   doi   link   bibtex   abstract  
Light Triggers the miRNA-Biogenetic Inconsistency for De-etiolated Seedling Survivability in Arabidopsis thaliana. Choi, S. W., Ryu, M. Y., Viczián, A., Jung, H. J., Kim, G. M., Arce, A. L., Achkar, N. P., Manavella, P., Dolde, U., Wenkel, S., Molnár, A., Nagy, F., Cho, S. K., & Yang, S. W. Molecular Plant, 13(3): 431–445. March 2020.
Light Triggers the miRNA-Biogenetic Inconsistency for De-etiolated Seedling Survivability in Arabidopsis thaliana [link]Paper   doi   link   bibtex   abstract  
Light affects tissue patterning of the hypocotyl in the shade-avoidance response. Botterweg-Paredes, E., Blaakmeer, A., Hong, S., Sun, B., Mineri, L., Kruusvee, V., Xie, Y., Straub, D., Ménard, D., Pesquet, E., & Wenkel, S. PLOS Genetics, 16(3): e1008678. March 2020.
Light affects tissue patterning of the hypocotyl in the shade-avoidance response [link]Paper   doi   link   bibtex   abstract  
Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. Hong, S., Botterweg-Paredes, E., Doll, J., Eguen, T., Blaakmeer, A., Matton, S., Xie, Y., Skjøth Lunding, B., Zentgraf, U., Guan, C., Jiao, Y., & Wenkel, S. Development, 147(10): dev183681. May 2020.
Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions [link]Paper   doi   link   bibtex   abstract  
Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. DeHaan, L., Larson, S., López-Marqués, R. L., Wenkel, S., Gao, C., & Palmgren, M. Trends in Plant Science, 25(6): 525–537. June 2020.
Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop [link]Paper   doi   link   bibtex  
  2019 (1)
The B-Box-Containing MicroProtein miP1a/BBX31 Regulates Photomorphogenesis and UV-B Protection. Yadav, A., Bakshi, S., Yadukrishnan, P., Lingwan, M., Dolde, U., Wenkel, S., Masakapalli, S. K., & Datta, S. Plant Physiology, 179(4): 1876–1892. April 2019.
The B-Box-Containing MicroProtein miP1a/BBX31 Regulates Photomorphogenesis and UV-B Protection [link]Paper   doi   link   bibtex   abstract  
  2018 (3)
Approaches to identify and characterize microProteins and their potential uses in biotechnology. Bhati, K. K., Blaakmeer, A., Paredes, E. B., Dolde, U., Eguen, T., Hong, S., Rodrigues, V., Straub, D., Sun, B., & Wenkel, S. Cellular and Molecular Life Sciences, 75(14): 2529–2536. July 2018.
Approaches to identify and characterize microProteins and their potential uses in biotechnology [link]Paper   doi   link   bibtex   abstract  
Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators. Zhang, C., Wang, J., Wenkel, S., Chandler, J. W., Werr, W., & Jiao, Y. Development, 145(24): dev158352. December 2018.
Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators [link]Paper   doi   link   bibtex   abstract  
Synthetic MicroProteins: Versatile Tools for Posttranslational Regulation of Target Proteins. Dolde, U., Rodrigues, V., Straub, D., Bhati, K. K., Choi, S., Yang, S. W., & Wenkel, S. Plant Physiology, 176(4): 3136–3145. April 2018.
Synthetic MicroProteins: Versatile Tools for Posttranslational Regulation of Target Proteins [link]Paper   doi   link   bibtex   abstract  
  2017 (3)
Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins. Straub, D., & Wenkel, S. Genome Biology and Evolution, 9(3): 777–789. March 2017.
Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins [link]Paper   doi   link   bibtex   abstract  
Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Barghetti, A., Sjögren, L., Floris, M., Paredes, E. B., Wenkel, S., & Brodersen, P. Genes & Development, 31(22): 2282–2295. November 2017.
Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance [link]Paper   doi   link   bibtex   abstract  
The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Merelo, P., Paredes, E. B., Heisler, M. G, & Wenkel, S. Current Opinion in Plant Biology, 35: 111–116. February 2017.
The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion [link]Paper   doi   link   bibtex   abstract  
  2016 (2)
MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis. Graeff, M., Straub, D., Eguen, T., Dolde, U., Rodrigues, V., Brandt, R., & Wenkel, S. PLOS Genetics, 12(3): e1005959. March 2016.
MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Merelo, P., Ram, H., Pia Caggiano, M., Ohno, C., Ott, F., Straub, D., Graeff, M., Cho, S. K., Yang, S. W., Wenkel, S., & Heisler, M. G. Proceedings of the National Academy of Sciences, 113(42): 11973–11978. October 2016.
Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity [link]Paper   doi   link   bibtex   abstract  
  2015 (2)
Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways. Xie, Y., Straub, D., Eguen, T., Brandt, R., Stahl, M., Martínez-García, J. F., & Wenkel, S. Plant Physiology, 169(2): 1240–1253. October 2015.
Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways [link]Paper   doi   link   bibtex   abstract  
MicroProteins: small size – big impact. Eguen, T., Straub, D., Graeff, M., & Wenkel, S. Trends in Plant Science, 20(8): 477–482. August 2015.
MicroProteins: small size – big impact [link]Paper   doi   link   bibtex  
  2014 (2)
Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment. Brandt, R., Cabedo, M., Xie, Y., & Wenkel, S. Journal of Integrative Plant Biology, 56(6): 518–526. 2014.
Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment [link]Paper   doi   link   bibtex   abstract  
REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Xie, Y., Huhn, K., Brandt, R., Potschin, M., Bieker, S., Straub, D., Doll, J., Drechsler, T., Zentgraf, U., & Wenkel, S. Development, 141(24): 4772–4783. December 2014.
REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
  2013 (2)
Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops. Brandt, R., Xie, Y., Musielak, T., Graeff, M., Stierhof, Y., Huang, H., Liu, C., & Wenkel, S. Mechanisms of Development, 130(1): 25–33. January 2013.
Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops [link]Paper   doi   link   bibtex   abstract  
Genome-Wide Identification of KANADI1 Target Genes. Merelo, P., Xie, Y., Brand, L., Ott, F., Weigel, D., Bowman, J. L., Heisler, M. G., & Wenkel, S. PLOS ONE, 8(10): e77341. October 2013.
Genome-Wide Identification of KANADI1 Target Genes [link]Paper   doi   link   bibtex   abstract  
  2012 (4)
ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Bou-Torrent, J., Salla-Martret, M., Brandt, R., Musielak, T., Palauqui, J., Martínez-García, J. F., & Wenkel, S. Plant Signaling & Behavior, 7(11): 1382–1387. November 2012.
ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Gendron, J. M., Liu, J., Fan, M., Bai, M., Wenkel, S., Springer, P. S., Barton, M. K., & Wang, Z. Proceedings of the National Academy of Sciences, 109(51): 21152–21157. December 2012.
Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis [link]Paper   doi   link   bibtex   abstract  
Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Brandt, R., Salla-Martret, M., Bou-Torrent, J., Musielak, T., Stahl, M., Lanz, C., Ott, F., Schmid, M., Greb, T., Schwarz, M., Choi, S., Barton, M. K., Reinhart, B. J., Liu, T., Quint, M., Palauqui, J., Martínez-García, J. F., & Wenkel, S. The Plant Journal: For Cell and Molecular Biology, 72(1): 31–42. October 2012.
doi   link   bibtex   abstract  
Regulation of protein function by interfering protein species. Graeff, M., & Wenkel, S. BioMolecular Concepts, 3(1): 71–78. February 2012.
Regulation of protein function by interfering protein species [link]Paper   doi   link   bibtex   abstract  
  2011 (1)
Regulation of protein function by ‘microProteins’. Staudt, A., & Wenkel, S. EMBO reports, 12(1): 35–42. January 2011.
Regulation of protein function by ‘microProteins’ [link]Paper   doi   link   bibtex   abstract  
  2008 (1)
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. Jang, S., Marchal, V., Panigrahi, K. C S, Wenkel, S., Soppe, W., Deng, X., Valverde, F., & Coupland, G. The EMBO Journal, 27(8): 1277–1288. April 2008.
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response [link]Paper   doi   link   bibtex   abstract  
  2007 (1)
A Feedback Regulatory Module Formed by LITTLE ZIPPER and HD-ZIPIII Genes. Wenkel, S., Emery, J., Hou, B., Evans, M. M., & Barton, M. The Plant Cell, 19(11): 3379–3390. November 2007.
A Feedback Regulatory Module Formed by LITTLE ZIPPER and HD-ZIPIII Genes [link]Paper   doi   link   bibtex   abstract  
  2006 (2)
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Laubinger, S., Marchal, V., Gentilhomme, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C., Braun, H., Coupland, G., & Hoecker, U. Development, 133(16): 3213–3222. August 2006.
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability [link]Paper   doi   link   bibtex   abstract  
CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., & Coupland, G. The Plant Cell, 18(11): 2971–2984. November 2006.
CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis [link]Paper   doi   link   bibtex   abstract  
  2003 (1)
Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. Becker, D., Hoth, S., Ache, P., Wenkel, S., Roelfsema, M., Meyerhoff, O., Hartung, W., & Hedrich, R. FEBS Letters, 554(1-2): 119–126. 2003.
Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress [link]Paper   doi   link   bibtex   abstract  
{tab=Svenska}

Portrait photo of Stephan Wenkel Vi är intresserade av att förstå hur växter använder små proteiner för att dynamiskt anpassa tillväxt och utveckling till miljöförändringar.

Det finns en växande förståelse för att proteomerna är mer komplexa än man tidigare trott. Fram till nyligen klassificerades till exempel gener som kodar för proteiner med mindre än 100 aminosyror ofta som artefakter. Detta ledde till att många av dessa små gener inte togs med i genombeskrivningarna. Förutom dessa enskilda, individuella små gener kan små proteiner också uppstå genom processer som alternativ splicing eller alternativa transkriptionella startpunkter. En gen kan alltså koda för mer än ett protein. Dessa processer gör att det finns mycket fler olika proteiner i cellen än antalet proteinkodande gener i genomet.

I vår forskning använder vi både proteincentrerade metoder (baserade på identifiering och karakterisering av specifika små proteiner, ofta mikroProteiner) och processorienterade metoder, där vi försöker förstå hur växter dynamiskt ändrar sin utveckling som respons på miljöförändringar. För att identifiera små proteiner, såsom mikroProteiner i ett sekvenserat genom, har vi utvecklat mjukvaran miPFinder, som kan klassificera små proteiner som mikroProteiner (Straub och Wenkel, 2017). Biologiska processer som vi studerar är växtens reaktion på skugga eller hur blomning initieras som en reaktion på förändrad dagslängd och temperatur. Vi har bland annat kunnat visa att små B-box-mikroProteiner påverkar när växten blommar betydligt (Graeff et al., 2016).

Vad kommer härnäst? På grund av sin ringa storlek och förmågan att förutsäga proteininteraktioner är mikroProteiner väl lämpade för reglering av bioteknologiska processer. Med hjälp av nya verktyg för genomteknik undersöker vi för närvarande möjligheten att skapa mikroProteiner de novo för att påverka växtens utveckling.