The photosynthesis and respiration facility at UPSC provides a comprehensive range of instruments to assay photosynthetic and respiratory activities for a broad spectrum of samples, from isolated complexes to intact leaves, needles or roots, and of species ranging from cyanobacteria and algae to Arabidopsis and trees.
The facility offers unique possibilities to test the effect of light intensity and fluctuations under various conditions. Our objective is to assist researchers in their investigation of plant physiology.
{tab=Instrumentation} Instrumentation available at the facility
Chlorophyll fluorescence: SpeedZen, HandyFluorCAM and Dual-PAM
In vivo spectroscopy: JTS-100 & Laser
Oxygen concentration: Clark-type oxygen electrode system
Gas exchange system: LI-COR 6400XT
LED panels: White light LED panel, RGB LED panel
Pigment content: CCM-200, CCM-300
Low-temperature Chl fluorescence: FluoroMax Plus spectrofluorometer
Biochemical assays: Luminometer, Spectrophotometer
{tab=Steering committee}
A steering committee oversees the work of the facility and decides what techniques should be developed:
Alizée Malnoë, Assist. Prof., Dept. of Plant Physiology, Umeå University
Olivier Keech, Assoc. Prof., Dept. of Plant Physiology, Umeå University
Stefan Jansson, Prof., Dept. of Plant Physiology, Umeå University
Tatyana Shutova, PhD, Dept. of Plant Physiology, Umeå University
Vaughan Hurry, Prof., Dept. of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences
Wolfgang Schröder, Prof., Dept. of Chemistry, Umeå University
Åsa Strand, Prof., Dept. of Plant Physiology, Umeå University
{tab=Publications} Selected publications from the facility
Amstutz C.L., Fristedt R., Schultink A., Merchant S.S., Niyogi K.K., Malnoë A. (2020) “An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis.” Nature Plants 6: 154-166. https://doi.org/10.1038/s41477-020-0591-9
Yang, Q., Blanco, N. E., Hermida-Carrera, C., Lehotai, N., Hurry, V. and Strand, Å. (2020) Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nature Communications 11(1): 128. https://doi.org/10.1038/s41467-019-13954-0
Chen Y.E., Yuan S., Lezhneva L., Meurer J., Schwenkert S., Mamedov F., Schröder W.P. (2019) "The low molecular mass Photosystem II protein PsbTn is important for light acclimation." Plant Physiology 179: 1739-1753. https://doi.org/10.1104/pp.18.01251
Kupelin L.V., Stangl Z.R., Ivanov A.G., Bui V., Mema M., Huner N.P.A., Öquist G., Way D., Harry V. (2018) “Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature.” Plant Cell and Environment 41: 1331-1345. https://doi.org/10.1111/pce.13158
Law, S. R., D. Chrobok, M. Juvany, N. Delhomme, P. Lindén, B. Brouwer, A. Ahad, T. Moritz, S. Jansson, P. Gardeström and O. Keech (2018). "Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival." Plant Physiology 177(1): 132-150. https://doi.org/10.1104/pp.18.00062
Malnoë, A., Schultink, A., Shahrasbi, S., Rumeau, D., Havaux, M., and Niyogi, K.K. (2018). "The Plastid Lipocalin LCNP is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis." Plant Cell 30: 196-208. https://doi.org/10.1105/tpc.17.00536
Chrobok, D., S. R. Law, B. Brouwer, P. Linden, A. Ziolkowska, D. Liebsch, R. Narsai, B. Szal, T. Moritz, N. Rouhier, J. Whelan, P. Gardestrom and O. Keech (2016). "Dissecting the metabolic role of mitochondria during developmental leaf senescence." Plant Physiology 172: 2132-2153. https://doi.org/10.1104/pp.16.01463
Dejonghe, W., S. Kuenen, E. Mylle, M. Vasileva, O. Keech, C. Viotti, J. Swerts, M. Fendrych, F. A. Ortiz-Morea, K. Mishev, S. Delang, S. Scholl, X. Zarza, M. Heilmann, J. Kourelis, J. Kasprowicz, L. S. L. Nguyen, A. Drozdzecki, I. Van Houtte, A.-M. Szatmári, M. Majda, G. Baisa, S. Y. Bednarek, S. Robert, D. Audenaert, C. Testerink, T. Munnik, D. Van Damme, I. Heilmann, K. Schumacher, J. Winne, J. Friml, P. Verstreken and E. Russinova (2016). "Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification." Nature Communications 7(1): 11710. https://doi.org/10.1038/ncomms11710
Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Andersson, B., Allakhverdiev, S.I., Klimov, V.V., Dau, H., Junge, W. and Samuelsson, G. (2008). "The photosystem II‐associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal." The EMBO Journal, 27: 782-791. https://doi.org/10.1038/emboj.2008.12
Külheim C., Ågren J., Jansson S. (2002). “Rapid regulation of light harvesting is crucial for plant fitness in the field.” Science 297: 91-93. https://doi.org/10.1126/science.1072359
{tab=Facility Funding}
The instruments purchased for the facility were funded by the Kempe Foundations (JCK-1818 awarded to Alizée Malnoë), by the Faculty of Science and Technology from Umeå University (mid-range equipment call Spring 2019 awarded to Alizée Malnoë) and by the Swedish Research Council.
{tab=Manuals}
We have a collection of protocols and manuals that are available for registered users. Please log in to the UPSC internal homepage and go then to this link to access the documents:
Manuals & Protocols
{tab=Contacts}